Raziyeh Farmani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1508230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVIDâ€19 and the UK water sector: Exploring organizational responses through a resilience framework. Water and Environment Journal, 2022, 36, 161-171.	1.0	10
2	An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis. Reliability Engineering and System Safety, 2022, 218, 108201.	5.1	1
3	General resilience: Conceptual formulation and quantitative assessment for intervention development in the urban wastewater system. Water Research, 2022, 211, 118108.	5.3	11
4	Moving to a future of smart stormwater management: A review and framework for terminology, research, and future perspectives. Water Research, 2022, 218, 118409.	5.3	21
5	Optimal Location of Valves to Improve Equity in Intermittent Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	17
6	Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training. Hydrology and Earth System Sciences, 2021, 25, 2721-2738.	1.9	3
7	Coupled three-dimensional modelling of groundwater-surface water interactions for management of seawater intrusion in Pingtung Plain, Taiwan. Journal of Hydrology: Regional Studies, 2021, 36, 100850.	1.0	6
8	Short-term River streamflow modeling using Ensemble-based additive learner approach. Journal of Hydro-Environment Research, 2021, 39, 81-91.	1.0	10
9	Modular interdependency analysis for water distribution systems. Water Research, 2021, 201, 117320.	5.3	11
10	Analysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamics. Sustainability, 2021, 13, 1446.	1.6	8
11	Decarbonisation Using Hybrid Energy Solution: Case Study of Zagazig, Egypt. Energies, 2020, 13, 4680.	1.6	4
12	COVIDâ€19 and the water sector: understanding impact, preparedness and resilience in the UK through a sectorâ€wide survey. Water and Environment Journal, 2020, 34, 715-728.	1.0	27
13	Estimating Flood Characteristics Using Geomorphologic Flood Index with Regards to Rainfall Intensity-Duration-Frequency-Area Curves and CADDIES-2D Model in Three Iranian Basins. Sustainability, 2020, 12, 7371.	1.6	4
14	Water systems modelling, data and control. Urban Water Journal, 2020, 17, 681-681.	1.0	0
15	A Zero-Liquid Discharge Model for a Transient Solar-Powered Desalination System for Greenhouse. Water (Switzerland), 2020, 12, 1440.	1.2	9
16	Impact of isolation valves location on resilience of water distribution systems. Urban Water Journal, 2020, 17, 560-567.	1.0	14
17	Analysing the Material Suitability and Concentration Ratio of a Solar-Powered Parabolic trough Collector (PTC) Using Computational Fluid Dynamics. Energies, 2020, 13, 5479.	1.6	7
18	Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeology Journal, 2020, 28, 2085-2103.	0.9	19

RAZIYEH FARMANI

#	Article	IF	CITATIONS
19	Battle of Postdisaster Response and Restoration. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 04020067.	1.3	14
20	Strategic planning of the integrated urban wastewater system using adaptation pathways. Water Research, 2020, 182, 116013.	5.3	20
21	A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience. Sustainability, 2020, 12, 1797.	1.6	22
22	Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability, 2020, 12, 986.	1.6	29
23	Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability, 2020, 12, 2794.	1.6	28
24	Energy Optimization Using a Pump Scheduling Tool in Water Distribution Systems. ARO-the Scientific Journal of Koya University, 2020, 8, 112-123.	0.2	2
25	Co-producing research with academics and industry to create a more resilient UK water sector. Research for All, 2020, 4, .	0.1	0
26	Modelling the future impacts of urban spatial planning on the viability of alternative water supply. Water Research, 2019, 162, 200-213.	5.3	19
27	Water Distribution Networks Resilience Analysis: a Comparison between Graph Theory-Based Approaches and Global Resilience Analysis. Water Resources Management, 2019, 33, 2925-2940.	1.9	39
28	Re-distributed manufacturing and the food-water-energy nexus: opportunities and challenges. Production Planning and Control, 2019, 30, 593-609.	5.8	13
29	Exploring wastewater system performance under future threats: Does enhancing resilience increase sustainability?. Water Research, 2019, 149, 448-459.	5.3	24
30	Attribute-based intervention development for increasing resilience of urban drainage systems. Water Science and Technology, 2018, 77, 1757-1764.	1.2	18
31	State of SuDS delivery in the United Kingdom. Water and Environment Journal, 2018, 32, 9-16.	1.0	36
32	A multi expert decision support tool for the evaluation of advanced wastewater treatment trains: A novel approach to improve urban sustainability. Environmental Science and Policy, 2018, 90, 1-10.	2.4	20
33	Optimal Operation of Water Distribution Systems Using a Graph Theory–Based Configuration of District Metered Areas. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	17
34	Topological attributes of network resilience: A study in water distribution systems. Water Research, 2018, 143, 376-386.	5.3	123
35	Framework for Assessing Flood Reliability and Resilience of Wastewater Treatment Plants. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	16
36	Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors. Journal of Hydroinformatics, 2018, 20, 1191-1200.	1.1	20

RAZIYEH FARMANI

#	Article	IF	CITATIONS
37	Intermittent water supply systems: causal factors, problems and solution options. Urban Water Journal, 2018, 15, 488-500.	1.0	62
38	Improving Prediction of Dam Failure Peak Outflow Using Neuroevolution Combined with K-Means Clustering. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	14
39	Pipe Failure Prediction in Water Distribution Systems Considering Static and Dynamic Factors. Procedia Engineering, 2017, 186, 117-126.	1.2	42
40	Optimal Rehabilitation of Water Distribution Systems Using a Cluster-Based Technique. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	21
41	Application of Bayesian Decision Networks for Groundwater Resources Management Under the Conditions of High Uncertainty and Data Scarcity. Water Resources Management, 2017, 31, 1859-1879.	1.9	15
42	A framework to support decision making in the selection of sustainable drainage system design alternatives. Journal of Environmental Management, 2017, 201, 145-152.	3.8	51
43	Reliable, resilient and sustainable water management: the Safe & SuRe approach. Global Challenges, 2017, 1, 63-77.	1.8	176
44	Pipeline failure prediction in water distribution networks using evolutionary polynomial regression combined with <i>K</i> -means clustering. Urban Water Journal, 2017, 14, 737-742.	1.0	41
45	The Local Nexus Network: Exploring the Future of Localised Food Systems and Associated Energy and Water Supply. Smart Innovation, Systems and Technologies, 2016, , 613-624.	0.5	8
46	Global resilience analysis of water distribution systems. Water Research, 2016, 106, 383-393.	5.3	148
47	Redesign of Water Distribution Systems for Passive Containment of Contamination. Journal - American Water Works Association, 2016, 108, E381-E391.	0.2	7
48	Twin-Hierarchy Decomposition for Optimal Design of Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	15
49	Methods for Preserving Duration–Intensity Correlation on Synthetically Generated Water-Demand Pulses. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	7
50	Correlation or not Correlation? This is the Question in Modelling Residential Water Demand Pulses. Procedia Engineering, 2015, 119, 1455-1462.	1.2	4
51	Enhancing resilience in urban water systems for future cities. Water Science and Technology: Water Supply, 2015, 15, 1343-1352.	1.0	37
52	Preserving Duration-intensity Correlation on Synthetically Generated Water Demand Pulses. Procedia Engineering, 2015, 119, 1463-1472.	1.2	6
53	Delivering a Multi-Functional and Resilient Urban Forest. Sustainability, 2015, 7, 4600-4624.	1.6	23
54	A global analysis approach for investigating structural resilience in urban drainage systems. Water Research, 2015, 81, 15-26.	5.3	213

4

Raziyeh Farmani

#	Article	IF	CITATIONS
55	Forecasting Domestic Water Consumption from Smart Meter Readings Using Statistical Methods and Artificial Neural Networks. Procedia Engineering, 2015, 119, 1419-1428.	1.2	41
56	Considering the Mutual Dependence of Pulse Duration and Intensity in Models for Generating Residential Water Demand. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	31
57	A surrogate model for simulation–optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology, 2015, 523, 542-554.	2.3	68
58	Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers. Water Resources Management, 2015, 29, 1843-1857.	1.9	60
59	Hierarchical Decomposition of Water Distribution Systems for Background Leakage Assessment. Procedia Engineering, 2014, 89, 53-58.	1.2	7
60	A New Approach to Urban Water Management: Safe and Sure. Procedia Engineering, 2014, 89, 347-354.	1.2	125
61	A Web-based Platform for Water Efficient Households. Procedia Engineering, 2014, 89, 1128-1135.	1.2	15
62	Clustering analysis of water distribution systems: identifying critical components and community impacts. Water Science and Technology, 2014, 70, 1764-1773.	1.2	39
63	Implications of Urban Form on Water Distribution Systems Performance. Water Resources Management, 2014, 28, 83-97.	1.9	29
64	A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks. KSCE Journal of Civil Engineering, 2014, 18, 941-948.	0.9	79
65	Reliability Indicators for Water Distribution System Design: Comparison. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 160-168.	1.3	69
66	Pressure-Discharge Relations with Application to Head-Driven Simulation of Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 660-670.	1.3	36
67	Towards more resilient and adaptable water distribution systems under future demand uncertainty. Water Science and Technology: Water Supply, 2013, 13, 1495-1506.	1.0	2
68	Urban futures and the code for sustainable homes. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 37-58.	0.4	15
69	Scenario-based sustainable water management and urban regeneration. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 89-98.	0.4	13
70	Benchmarking sustainability in cities: The role of indicators and future scenarios. Global Environmental Change, 2012, 22, 245-254.	3.6	105
71	Design and optimization of microstructure of auxetic materials. Engineering Computations, 2012, 29, 260-276.	0.7	36
72	Scenario Archetypes: Converging Rather than Diverging Themes. Sustainability, 2012, 4, 740-772.	1.6	136

Raziyeh Farmani

#	Article	IF	CITATIONS
73	Bayesian networks in environmental and resource management. Integrated Environmental Assessment and Management, 2012, 8, 418-429.	1.6	131
74	An evolutionary Bayesian belief network methodology for participatory decision making under uncertainty: An application to groundwater management. Integrated Environmental Assessment and Management, 2012, 8, 456-461.	1.6	16
75	A simulationâ€optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 1757-1779.	1.7	41
76	Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain). Water Resources Management, 2011, 25, 3883-3909.	1.9	10
77	Closure to "Optimum Design and Management of Pressurized Branched Irrigation Networks―by Raziyeh Farmani, Ricardo Abadia, and Dragan Savic. Journal of Irrigation and Drainage Engineering - ASCE, 2010, 136, 159-160.	0.6	1
78	An evolutionary Bayesian belief network methodology for optimum management of groundwater contamination. Environmental Modelling and Software, 2009, 24, 303-310.	1.9	80
79	The Analytical Hierarchy Process for contaminated land management. Advanced Engineering Informatics, 2009, 23, 433-441.	4.0	48
80	Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling. Journal of Hydroinformatics, 2009, 11, 1-17.	1.1	123
81	Real-time modelling of a major water supply system. Water Management, 2007, 160, 103-108.	0.4	13
82	Optimum Design and Management of Pressurized Branched Irrigation Networks. Journal of Irrigation and Drainage Engineering - ASCE, 2007, 133, 528-537.	0.6	39
83	On Convergence of Multi-objective Pareto Front: Perturbation Method. , 2007, , 443-456.		0
84	Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality. Journal of Hydroinformatics, 2006, 8, 165-179.	1.1	131
85	A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 2005, 19, 255-262.	4.0	81
86	Self-Adaptive Fitness Formulation for Evolutionary Constrained Optimization of Water Systems. Journal of Computing in Civil Engineering, 2005, 19, 212-216.	2.5	15
87	Evolutionary multi-objective optimization in water distribution network design. Engineering Optimization, 2005, 37, 167-183.	1.5	171
88	Trade-off between Total Cost and Reliability for Anytown Water Distribution Network. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 161-171.	1.3	235
89	Self-adaptive fitness formulation for constrained optimization. IEEE Transactions on Evolutionary Computation, 2003, 7, 445-455.	7.5	297
90	Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy and Buildings, 2002, 34, 959-972.	3.1	384

#	Article	IF	CITATIONS
91	Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Computers and Geotechnics, 1999, 25, 1-24.	2.3	44
92	Development of scenarios for evaluating conversion from intermittent to continuous water supply strategies' sustainability implications. Urban Water Journal, 0, , 1-12.	1.0	1