Marcos G Quiles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1507993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 2022, 62, 817-828.	2.5	7
2	Importance of Numerical Implementation and Clustering Analysis in Force-Directed Algorithms for Accurate Community Detection. Applied Mathematics and Computation, 2022, 431, 127310.	1.4	0
3	Fake news agenda in the era of COVID-19: Identifying trends through fact-checking content. Online Social Networks and Media, 2021, 21, 100116.	2.3	62
4	Correlation-Based Framework for Extraction of Insights from Quantum Chemistry Databases: Applications for Nanoclusters. Journal of Chemical Information and Modeling, 2021, 61, 1125-1135.	2.5	3
5	Topological indexes and community structure for urban mobility networks: Variations in a business day. PLoS ONE, 2021, 16, e0248126.	1.1	3
6	COVID-19 fake news diffusion across Latin America. Social Network Analysis and Mining, 2021, 11, 47.	1.9	27
7	Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 2021, 61, 2294-2301.	2.5	6
8	Automation of Article Selection Process in Systematic Reviews Through Artificial Neural Network Modeling and Machine Learning: Protocol for an Article Selection Model. JMIR Research Protocols, 2021, 10, e26448.	0.5	1
9	Force-directed algorithms as a tool to support community detection. European Physical Journal: Special Topics, 2021, 230, 2745-2763.	1.2	3
10	Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 2021, 61, 4210-4223.	2.5	6
11	Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, 2020, 60, 537-545.	2.5	20
12	Community Detection in Very High-Resolution Meteorological Networks. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 2007-2010.	1.4	7
13	<i>Ab Initio</i> Insights into the Formation Mechanisms of 55-Atom Pt-Based Core–Shell Nanoalloys. Journal of Physical Chemistry C, 2020, 124, 1158-1164.	1.5	22
14	Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A, 2020, 124, 9854-9866.	1.1	50
15	A biochemical network modeling of a whole-cell. Scientific Reports, 2020, 10, 13303.	1.6	9
16	Spatiotemporal data analysis with chronological networks. Nature Communications, 2020, 11, 4036.	5.8	17
17	Measuring the engagement level in encrypted group conversations by using temporal networks. , 2020, , .		1
18	Dynamic Community Detection into Analyzing of Wildfires Events. Lecture Notes in Computer Science, 2020, , 1032-1047.	1.0	0

MARCOS G QUILES

#	Article	IF	CITATIONS
19	A Graph-Based Clustering Analysis of the QM9 Dataset via SMILES Descriptors. Lecture Notes in Computer Science, 2020, , 421-433.	1.0	1
20	Monitoring Night Skies with Deep Learning. Communications in Computer and Information Science, 2020, , 460-468.	0.4	0
21	Improving the Performance of an Integer Linear Programming Community Detection Algorithm Through Clique Filtering. Lecture Notes in Computer Science, 2019, , 757-769.	1.0	3
22	Clustering Data Streams: A Complex Network Approach. Lecture Notes in Computer Science, 2019, , 52-65.	1.0	0
23	How do urban mobility (geo)graph's topological properties fill a map?. Applied Network Science, 2019, 4, .	0.8	3
24	Qualitative data clustering: a new Integer Linear Programming model. , 2019, , .		0
25	From spatio-temporal data to chronological networks. , 2019, , .		8
26	Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850008.	0.7	2
27	An approach for applying Test-Driven Development (TDD) in the development of randomized algorithms. Journal of Software Engineering Research and Development, 2018, 6, .	1.0	4
28	A correlation-based approach for event detection in Instagram. Journal of Intelligent and Fuzzy Systems, 2018, 34, 2971-2982.	0.8	1
29	Preprocessing Technique for Cluster Editing via Integer Linear Programming. Lecture Notes in Computer Science, 2018, , 287-297.	1.0	Ο
30	Community detection in complex networks via adapted Kuramoto dynamics. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 130-141.	1.7	13
31	Parallel Algorithm for Dynamic Community Detection. , 2017, , .		1
32	An alternative approach for binary and categorical self-organizing maps. , 2017, , .		5
33	Classification of Cocaine Dependents from fMRI Data Using Cluster-Based Stratification and Deep Learning. Lecture Notes in Computer Science, 2017, , 298-313.	1.0	2
34	Automatically Design Distance Functions for Graph-Based Semi-Supervised Learning. , 2017, , .		0
35	Dynamical detection of network communities. Scientific Reports, 2016, 6, 25570.	1.6	17
36	Sentiment and Behavior Analysis of One Controversial American Individual on Twitter. Lecture Notes in Computer Science, 2016, , 509-518.	1.0	0

Marcos G Quiles

#	Article	IF	CITATIONS
37	An object-based visual selection framework. Neurocomputing, 2016, 180, 35-54.	3.5	2
38	Active Consensus-Based Semi-supervised Growing Neural Gas. Lecture Notes in Computer Science, 2016, , 126-135.	1.0	0
39	Interactive image segmentation using particle competition and cooperation. , 2015, , .		6
40	Community detection, with lower time complexity, using coupled Kuramoto oscillators. , 2015, , .		0
41	Particle competition and cooperation for semi-supervised learning with label noise. Neurocomputing, 2015, 160, 63-72.	3.5	18
42	Interactive Image Segmentation of Non-contiguous Classes Using Particle Competition and Cooperation. Lecture Notes in Computer Science, 2015, , 203-216.	1.0	2
43	Using Growing Neural Gas in Prototype Generation for Nearest Neighbor Classifiers. Lecture Notes in Computer Science, 2015, , 276-283.	1.0	1
44	An Object-Based Visual Selection Model Combining Physical Features and Memory. , 2014, , .		1
45	A consensus-based semi-supervised growing neural gas. , 2014, , .		2
46	Development of Adaptive Information Visualization Systems with Augmented Reality. , 2014, , .		2
47	Community Detection in Complex Networks Using Coupled Kuramoto Oscillators. , 2014, , .		1
48	A Methodology for Generating Time-Varying Complex Networks with Community Structure. Lecture Notes in Computer Science, 2014, , 344-359.	1.0	1
49	A dynamical model for community detection in complex networks. , 2013, , .		6
50	Top-Down Biasing and Modulation for Object-Based Visual Attention. Lecture Notes in Computer Science, 2013, , 325-332.	1.0	4
51	An Oscillatory Correlation Model for Semi-Supervised Classification. Learning and Nonlinear Models, 2013, 11, 3-10.	0.2	3
52	An Object-Based Visual Selection Model with Bottom-Up and Top-Down Modulations. , 2012, , .		4
53	Clus-DTI: improving decision-tree classification with a clustering-based decision-tree induction algorithm. Journal of the Brazilian Computer Society, 2012, 18, 351-362.	0.8	4

54 A clustering-based decision tree induction algorithm. , 2011, , .

MARCOS G QUILES

#	Article	IF	CITATIONS
55	Selecting salient objects in real scenes: An oscillatory correlation model. Neural Networks, 2011, 24, 54-64.	3.3	25
56	Particle Competition and Cooperation for Uncovering Network Overlap Community Structure. Lecture Notes in Computer Science, 2011, , 426-433.	1.0	3
57	Artificial Neural Networks and the Study of the Psychoactivity of Cannabinoid Compounds. Chemical Biology and Drug Design, 2010, 75, 632-640.	1.5	17
58	Label propagation through neuronal synchrony. , 2010, , .		12
59	Semi-supervised learning from imperfect data through particle cooperation and competition. , 2010, , .		19
60	Chaotic phase synchronization for visual selection. , 2009, , .		3
61	A network of integrate and fire neurons for visual selection. Neurocomputing, 2009, 72, 2198-2208.	3.5	6
62	Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks, 2009, 22, 728-737.	3.3	49
63	An oscillatory correlation model of object-based attention. , 2009, , .		7
64	Particle competition for complex network community detection. Chaos, 2008, 18, 033107.	1.0	45
65	Visual Selection with Feature Contrast-Based Inhibition in a Network of Integrate and Fire Neurons. , 2008, , .		4
66	A Visual Selection Mechanism Based on a Pulse-Coupled Neural Network. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	5
67	A Network of Dynamically Coupled Elements for Pixel Clustering. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	0
68	Visual Selection and Shifting Mechanisms Based on a Network of Chaotic Wilson-Cowan Oscillators. , 2007, , .		5
69	A Visual Selection Mechanism Based on Network of Chaotic Wilson-Cowan Oscillators. , 2007, ,		0
70	A Pulse-Coupled Neural Network as A Simplified Bottom-Up Visual Attention Model. , 2006, , .		1