Ana Elena Escalante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1507948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6565-6570.	7.1	197
2	Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biology, 2005, 50, 1808-1825.	2.4	116
3	Urban resilience efforts must consider social and political forces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 186-189.	7.1	116
4	The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park. Astrobiology, 2012, 12, 641-647.	3.0	86
5	Rhamnolipids: Production in bacteria other than <i>Pseudomonas aeruginosa</i> . European Journal of Lipid Science and Technology, 2010, 112, 1082-1087.	1.5	85
6	Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecology and Biogeography, 2005, 14, 241-248.	5.8	77
7	Ecological perspectives on synthetic biology: insights from microbial population biology. Frontiers in Microbiology, 2015, 6, 143.	3.5	62
8	Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiology Ecology, 2015, 91, .	2.7	60
9	Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiology Ecology, 2008, 65, 50-60.	2.7	45
10	Longâ€distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Molecular Ecology, 2003, 12, 2087-2097.	3.9	43
11	Seasonal Changes in a Maize-Based Polyculture of Central Mexico Reshape the Co-occurrence Networks of Soil Bacterial Communities. Frontiers in Microbiology, 2017, 8, 2478.	3.5	36
12	Pseudomonas cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro Cienegas valley in Coahuila, Mexico. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1416-1420.	1.7	35
13	Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico. Peerl, 2016, 4, e2459.	2.0	35
14	An Evoâ€Đevo Perspective on Multicellular Development of Myxobacteria. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 165-178.	1.3	30
15	History of adaptation determines shortâ€ŧerm shifts in performance and community structure of hydrogenâ€producing microbial communities degrading wheat straw. Microbial Biotechnology, 2017, 10, 1569-1580.	4.2	27
16	Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Systematic and Applied Microbiology, 2011, 34, 531-535.	2.8	26
17	Ecological perspectives of hydrogen fermentation by microbial consortia: What we have learned and the way forward. International Journal of Hydrogen Energy, 2016, 41, 17297-17308.	7.1	24
18	Population structure of Pseudomonas aeruginosa through a MLST approach and antibiotic resistance profiling of a Mexican clinical collection. Infection, Genetics and Evolution, 2018, 65, 43-54.	2.3	23

#	Article	IF	CITATIONS
19	Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. International Journal of Hydrogen Energy, 2019, 44, 13126-13134.	7.1	22
20	Diversity across Seasons of Culturable <i>Pseudomonas</i> from a Desiccation Lagoon in Cuatro Cienegas, Mexico. International Journal of Microbiology, 2012, 2012, 1-10.	2.3	21
21	The duo <i>Clostridium</i> and <i>Lactobacillus</i> linked to hydrogen production from a lignocellulosic substrate. Water Science and Technology, 2021, 83, 3033-3040.	2.5	20
22	Aquatic bacterial assemblage structure in Pozas Azules, Cuatro Cienegas Basin, Mexico: Deterministic vs. stochastic processes. International Microbiology, 2015, 18, 105-15.	2.4	20
23	Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs. Biogeochemistry, 2008, 89, 209-220.	3.5	19
24	Distribution patterns of Dikarya in arid and semiarid soils of Baja California, Mexico. Fungal Ecology, 2013, 6, 92-101.	1.6	16
25	Proposal for a sustainability evaluation framework for bioenergy production systems using the MESMIS methodology. Renewable and Sustainable Energy Reviews, 2017, 68, 360-369.	16.4	16
26	Comparative genetic structure in pines: evolutionary and conservation consequences. Revista Chilena De Historia Natural, 2002, 75, 27.	1.2	14
27	Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin. Frontiers in Plant Science, 2017, 8, 2030.	3.6	14
28	Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence. PeerJ, 2014, 2, e696.	2.0	14
29	From resilience attributes to city resilience. Landscape and Urban Planning, 2022, 226, 104485.	7.5	14
30	Plastic multicellular development of <i>Myxococcus xanthus</i> : genotype–environment interactions in a physical gradient. Royal Society Open Science, 2019, 6, 181730.	2.4	12
31	A Spectrum of Pleiotropic Consequences in Development Due to Changes in a Regulatory Pathway. PLoS ONE, 2012, 7, e43413.	2.5	12
32	Diversity of an uncommon elastic hypersaline microbial mat along a small-scale transect. PeerJ, 0, 10, e13579.	2.0	10
33	Cellâ€fate determination in <i>Myxococcus xanthus</i> development: Network dynamics and novel predictions. Development Growth and Differentiation, 2018, 60, 121-129.	1.5	9
34	The study of biodiversity in the era of massive sequencing. Revista Mexicana De Biodiversidad, 2014, 85, 1249-1264.	0.4	8
35	Collaborative framework for designing a sustainability science programme. International Journal of Sustainability in Higher Education, 2016, 17, 378-403.	3.1	8
36	Biophysical, infrastructural and social heterogeneities explain spatial distribution of waterborne gastrointestinal disease burden in Mexico City. Environmental Research Letters, 2018, 13, 064016.	5.2	7

ANA ELENA ESCALANTE

#	Article	IF	CITATIONS
37	Host genotype explains rhizospheric microbial community composition: the case of wild cotton metapopulations (Gossypium hirsutum L.) in Mexico. FEMS Microbiology Ecology, 2020, 96, .	2.7	7
38	Cognitive Maps Across Multiple Social Sectors: Shared and Unique Perceptions on the Quality of Agricultural Soils in Mexico. Frontiers in Sustainable Food Systems, 2021, 4, .	3.9	7
39	Recent and Historical Gene Flow in Cultivars, Landraces, and a Wild Taxon of Cucurbita pepo in Mexico. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
40	<i>In vitro</i> performance in cotton plants with different genetic backgrounds: the case of <i>Gossypium hirsutum</i> in Mexico, and its implications for germplasm conservation. PeerJ, 2019, 7, e7017.	2.0	6
41	Editorial: Conflict and Cooperation in Microbial Societies. Frontiers in Microbiology, 2017, 8, 141.	3.5	5
42	Evolutionary Rescue of an Environmental Pseudomonas otitidis in Response to Anthropogenic Perturbation. Frontiers in Microbiology, 2020, 11, 563885.	3.5	5
43	The environment topography alters the way to multicellularity in <i>Myxococcus xanthus</i> . Science Advances, 2021, 7, .	10.3	5
44	Laboratory biases hinder Ecoâ€Evoâ€Devo integration: Hints from the microbial world. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 14-24.	1.3	4
45	A framework for integrating functional and microbial data: The case of dark fermentation H2 production. International Journal of Hydrogen Energy, 2020, 45, 31706-31718.	7.1	4
46	Soil microbial composition and carbon mineralization are associated with vegetation type and temperature regime in mesocosms of a semiarid ecosystem. FEMS Microbiology Letters, 2021, 368, .	1.8	3
47	Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. Ecological Complexity, 2022, 50, 101002.	2.9	3
48	Editorial: Sustainability Challenges for Our Urban Futures. Frontiers in Environmental Science, 2020, 8, .	3.3	1
49	Free-living diazotrophs differ among soil microhabitats, soil depth, and seasonality in a tropical dryland of central Mexico. Journal of Arid Environments, 2021, 195, 104628.	2.4	1
50	Terrestrial N Cycling in an Endangered Oasis. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2018, , 15-29.	0.4	0
51	Precipitation Controls on Soil Biogeochemical and Microbial Community Composition in Rainfed Agricultural Systems in Tropical Drylands. Sustainability, 2021, 13, 11848.	3.2	0