Unnur Styrkarsdottir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1507646/publications.pdf

Version: 2024-02-01

71 papers 15,513 citations

43973 48 h-index 74018 75 g-index

79 all docs

79 docs citations

times ranked

79

19602 citing authors

#	Article	IF	Citations
1	Rare SLC13A1 variants associate with intervertebral disc disorder highlighting role of sulfate in disc pathology. Nature Communications, 2022, 13, 634.	5.8	21
2	Using multivariable Mendelian randomization to estimate the causal effect of bone mineral density on osteoarthritis risk, independently of body mass index. International Journal of Epidemiology, 2022, 51, 1254-1267.	0.9	20
3	Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify <i>WNT9A</i> as novel osteoarthritis gene. Annals of the Rheumatic Diseases, 2021, 80, 367-375.	0.5	26
4	Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 2021, 596, 393-397.	13.7	183
5	The CRTAC1 Protein in Plasma Is Associated With Osteoarthritis and Predicts Progression to Joint Replacement: A Largeâ€Scale Proteomics Scan in Iceland. Arthritis and Rheumatology, 2021, 73, 2025-2034.	2.9	27
6	Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell, 2021, 184, 4784-4818.e17.	13.5	188
7	A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1918-1936.	1.8	40
8	MEPE loss-of-function variant associates with decreased bone mineral density and increased fracture risk. Nature Communications, 2020, 11, 4093.	5 . 8	24
9	Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank. Communications Biology, 2020, 3, 129.	2.0	20
10	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	2.2	38
11	A PRPH splice-donor variant associates with reduced sural nerve amplitude and risk of peripheral neuropathy. Nature Communications, 2019, 10, 1777.	5 . 8	7
12	GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nature Communications, 2019, 10, 2054.	5.8	74
13	Sequence variation at ANAPC1 accounts for 24% of the variability in corneal endothelial cell density. Nature Communications, 2019, 10, 1284.	5.8	24
14	Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. Journal of Bone and Mineral Research, 2019, 34, 1284-1296.	3.1	27
15	Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. American Journal of Human Genetics, 2018, 102, 88-102.	2.6	252
16	Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nature Genetics, 2018, 50, 549-558.	9.4	223
17	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	1.5	341
18	Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nature Genetics, 2018, 50, 1681-1687.	9.4	131

#	Article	IF	CITATIONS
19	Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nature Communications, 2018, 9, 3636.	5.8	74
20	Sequence variant at 8q24.21 associates with sciatica caused by lumbar disc herniation. Nature Communications, 2017, 8, 14265.	5.8	48
21	Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nature Genetics, 2017, 49, 801-805.	9.4	75
22	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	5.8	147
23	Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Human Molecular Genetics, 2017, 26, 3850-3858.	1.4	56
24	Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis. PLoS Genetics, 2016, 12, e1006260.	1.5	76
25	The rate of meiotic gene conversion varies by sex and age. Nature Genetics, 2016, 48, 1377-1384.	9.4	85
26	Two Rare Mutations in the <i>COL1A2</i> Gene Associate With Low Bone Mineral Density and Fractures in Iceland. Journal of Bone and Mineral Research, 2016, 31, 173-179.	3.1	35
27	Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nature Communications, 2016, 7, 10129.	5.8	58
28	Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nature Communications, 2015, 6, 8464.	5.8	304
29	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	13.7	483
30	A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus. Journal of Medical Genetics, 2014, 51, 122-131.	1.5	36
31	Assessment of Osteoarthritis Candidate Genes in a Metaâ€Analysis of Nine Genomeâ€Wide Association Studies. Arthritis and Rheumatology, 2014, 66, 940-949.	2.9	108
32	A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Annals of the Rheumatic Diseases, 2014, 73, 2130-2136.	0.5	108
33	Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus. Bone, 2014, 59, 20-27.	1.4	32
34	Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nature Genetics, 2014, 46, 498-502.	9.4	136
35	Genome-wide association study for radiographic vertebral fractures: a potential role for the 16q24 BMD locus. Bone, 2014, 59, 20-7.	1.4	17
36	Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature, 2013, 497, 517-520.	13.7	236

#	Article	IF	CITATIONS
37	The <i>DOT1L</i> rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Annals of the Rheumatic Diseases, 2013, 72, 1264-1265.	0.5	51
38	A common biological basis of obesity and nicotine addiction. Translational Psychiatry, 2013, 3, e308-e308.	2.4	51
39	Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers. Archives of General Psychiatry, 2012, 69, 854.	13.8	71
40	A Large-Scale Population-Based Analysis of Common Genetic Variation in the Thyroid Hormone Receptor Alpha Locus and Bone. Thyroid, 2012, 22, 223-224.	2.4	7
41	Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genetics, 2012, 44, 491-501.	9.4	1,100
42	Variants in <i>DENND1A </i> Are Associated with Polycystic Ovary Syndrome in Women of European Ancestry. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1342-E1347.	1.8	142
43	Assessment of gene-by-sex interaction effect on bone mineral density. Journal of Bone and Mineral Research, 2012, 27, 2051-2064.	3.1	47
44	Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nature Genetics, 2012, 44, 260-268.	9.4	303
45	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genetics, 2011, 43, 753-760.	9.4	289
46	Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Annals of the Rheumatic Diseases, $2011, 70, 864-867$.	0.5	119
47	Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Annals of the Rheumatic Diseases, 2011, 70, 349-355.	0.5	126
48	A Variant in MCF2L Is Associated with Osteoarthritis. American Journal of Human Genetics, 2011, 89, 446-450.	2.6	115
49	Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk. PLoS Genetics, 2011, 7, e1001372.	1.5	233
50	Large Scale Replication Study of the Association between HLA Class II/BTNL2 Variants and Osteoarthritis of the Knee in European-Descent Populations. PLoS ONE, 2011, 6, e23371.	1.1	32
51	Association of JAG1 with Bone Mineral Density and Osteoporotic Fractures: A Genome-wide Association Study and Follow-up Replication Studies. American Journal of Human Genetics, 2010, 86, 229-239.	2.6	188
52	A genomeâ€wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis and Rheumatism, 2010, 62, 499-510.	6.7	178
53	Genome-Wide Meta-Analysis for Serum Calcium Identifies Significantly Associated SNPs near the Calcium-Sensing Receptor (CASR) Gene. PLoS Genetics, 2010, 6, e1001035.	1.5	84
54	Ancestry-Shift Refinement Mapping of the C6orf97-ESR1 Breast Cancer Susceptibility Locus. PLoS Genetics, 2010, 6, e1001029.	1.5	82

#	Article	IF	Citations
55	European Bone Mineral Density Loci Are Also Associated with BMD in East-Asian Populations. PLoS ONE, 2010, 5, e13217.	1.1	81
56	Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 2009, 41, 18-24.	9.4	1,247
57	New sequence variants associated with bone mineral density. Nature Genetics, 2009, 41, 15-17.	9.4	328
58	Genome-wide association study identifies sequence variants on $6q21$ associated with age at menarche. Nature Genetics, 2009 , 41 , 734 - 738 .	9.4	199
59	Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nature Genetics, 2009, 41, 926-930.	9.4	248
60	Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genetics, 2009, 41, 1199-1206.	9.4	660
61	Collaborative Meta-analysis: Associations of 150 Candidate Genes With Osteoporosis and Osteoporotic Fracture. Annals of Internal Medicine, 2009, 151, 528.	2.0	250
62	Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Annals of Neurology, 2008, 64, 402-409.	2.8	253
63	Impact of Genetics on Low Bone Mass in Adults. Journal of Bone and Mineral Research, 2008, 23, 1584-1590.	3.1	41
64	Genetics of gene expression and its effect on disease. Nature, 2008, 452, 423-428.	13.7	1,209
65	Multiple Genetic Loci for Bone Mineral Density and Fractures. New England Journal of Medicine, 2008, 358, 2355-2365.	13.9	582
66	A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics, 2007, 39, 770-775.	9.4	966
67	Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics, 2006, 38, 320-323.	9.4	2,005
68	Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2. PLoS Biology, 2003, 1, e69.	2.6	222
69	Two-Step Activation of Meiosis by the <i>mat1 < /i>Locus in <i>Schizosaccharomyces pombe < /i>. Molecular and Cellular Biology, 1995, 15, 4964-4970.</i></i>	1.1	87
70	The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion. Current Genetics, 1993, 23, 184-186.	0.8	72
71	Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction. Molecular Genetics and Genomics, 1992, 235, 122-130.	2.4	34