Vladimir Privman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150703/publications.pdf Version: 2024-02-01

VIADIMID DOWMAN

#	Article	IF	CITATIONS
1	Enzyme-based logic systems for information processing. Chemical Society Reviews, 2010, 39, 1835.	18.7	489
2	Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors. Journal of Colloid and Interface Science, 1999, 213, 36-45.	5.0	373
3	Model of Formation of Monodispersed Colloidsâ€. Journal of Physical Chemistry B, 2001, 105, 11630-11635.	1.2	269
4	Optimization of Enzymatic Biochemical Logic for Noise Reduction and Scalability: How Many Biocomputing Gates Can Be Interconnected in a Circuit?. Journal of Physical Chemistry B, 2008, 112, 11777-11784.	1.2	107
5	Network Analysis of Biochemical Logic for Noise Reduction and Stability: A System of Three Coupled Enzymatic AND Gates. Journal of Physical Chemistry B, 2009, 113, 5301-5310.	1.2	105
6	Indirect Interaction of Solid-State Qubits via Two-Dimensional Electron Gas. Physical Review Letters, 2001, 86, 5112-5115.	2.9	103
7	Random sequential adsorption: from continuum to lattice and pre-patterned substrates. Journal of Physics Condensed Matter, 2007, 19, 065124.	0.7	98
8	Model of Nanocrystal Formation in Solution by Burst Nucleation and Diffusional Growth. Langmuir, 2008, 24, 26-35.	1.6	92
9	Model of Controlled Synthesis of Uniform Colloid Particles:Â Cadmium Sulfide. Langmuir, 2003, 19, 10679-10683.	1.6	84
10	Adiabatic Decoherence. Journal of Statistical Physics, 1998, 91, 787-799.	0.5	70
11	Semiclassical Monte Carlo model for in-plane transport of spin-polarized electrons in III–V heterostructures. Journal of Applied Physics, 2003, 94, 1769-1775.	1.1	65
12	Formation of monodispersed cadmium sulfide particles by aggregation of nanosize precursors. Advances in Colloid and Interface Science, 2003, 100-102, 169-183.	7.0	58
13	Decoherence of a measure of entanglement. Physical Review A, 2005, 71, .	1.0	56
14	Enzymatic AND Logic Gates Operated Under Conditions Characteristic of Biomedical Applications. Journal of Physical Chemistry B, 2010, 114, 12166-12174.	1.2	55
15	Enzyme-Based Logic: OR Gate with Double-Sigmoid Filter Response. Journal of Physical Chemistry B, 2012, 116, 9683-9689.	1.2	53
16	Short-time decoherence for general system-environment interactions. Physical Review A, 2004, 69, .	1.0	52
17	Enzymatic AND-gate based on electrode-immobilized glucose-6-phosphate dehydrogenase: Towards digital biosensors and biochemical logic systems with low noise. Biosensors and Bioelectronics, 2009, 25, 695-701.	5.3	52
18	Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Signal Change. Journal of Physical Chemistry B, 2010, 114, 13601-13608.	1.2	52

VLADIMIR PRIVMAN

#	Article	IF	CITATIONS
19	Analog Noise Reduction in Enzymatic Logic Gates. Journal of Physical Chemistry B, 2009, 113, 10472-10479.	1.2	49
20	Enzyme-Based Logic Analysis of Biomarkers at Physiological Concentrations: AND Gate with Double-Sigmoid "Filter―Response. Journal of Physical Chemistry B, 2012, 116, 4457-4464.	1.2	48
21	Biomolecular Filters for Improved Separation of Output Signals in Enzyme Logic Systems Applied to Biomedical Analysis. Analytical Chemistry, 2011, 83, 8383-8386.	3.2	47
22	Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic. Journal of Physical Chemistry B, 2010, 114, 14103-14109.	1.2	46
23	A biochemical logic approach to biomarker-activated drug release. Journal of Materials Chemistry, 2012, 22, 19709.	6.7	46
24	Enzymatic AND Logic Gate with Sigmoid Response Induced by Photochemically Controlled Oxidation of the Output. Journal of Physical Chemistry B, 2013, 117, 7559-7568.	1.2	46
25	FINITE-SIZE SCALING THEORY. , 1990, , 1-98.		46
26	Networked Enzymatic Logic Gates with Filtering: New Theoretical Modeling Expressions and Their Experimental Application. Journal of Physical Chemistry B, 2013, 117, 14928-14939.	1.2	45
27	Predictive design of polymer molecular weight distributions in anionic polymerization. Polymer Chemistry, 2020, 11, 326-336.	1.9	45
28	Shape Selection in Diffusive Growth of Colloids and Nanoparticles. Langmuir, 2009, 25, 7940-7953.	1.6	42
29	Modularity of Biochemical Filtering for Inducing Sigmoid Response in Both Inputs in an Enzymatic AND Gate. Journal of Physical Chemistry B, 2013, 117, 9857-9865.	1.2	39
30	Locally frozen defects in random sequential adsorption with diffusional relaxation. Physica A: Statistical Mechanics and Its Applications, 1993, 199, 527-538.	1.2	36
31	COLLECTIVE EFFECTS IN RANDOM SEQUENTIAL ADSORPTION OF DIFFUSING HARD SQUARES. Modern Physics Letters B, 1993, 07, 189-196.	1.0	36
32	Towards biochemical filters with a sigmoidal response to pH changes: buffered biocatalytic signal transduction. Physical Chemistry Chemical Physics, 2011, 13, 4507.	1.3	36
33	Control of Noise in Chemical and Biochemical Information Processing. Israel Journal of Chemistry, 2011, 51, 118-131.	1.0	36
34	Initial Decoherence of Open Quantum Systems. Journal of Statistical Physics, 2003, 110, 957-970.	0.5	34
35	Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate. Journal of Physical Chemistry B, 2011, 115, 9838-9845.	1.2	34
36	Exchange interaction, entanglement, and quantum noise due to a thermal bosonic field. Physical Review B, 2007, 75, .	1.1	33

VLADIMIR PRIVMAN

#	Article	IF	CITATIONS
37	Mechanisms of Diffusional Nucleation of Nanocrystals and Their Selfâ€Assembly into Uniform Colloids. Annals of the New York Academy of Sciences, 2009, 1161, 508-525.	1.8	32
38	A bioinspired associative memory system based on enzymatic cascades. Chemical Communications, 2013, 49, 6962.	2.2	30
39	Measures of decoherence. , 2003, , .		29
40	Models of synthesis of uniform colloids and nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 1-12.	1.3	29
41	Quantum computing with spin qubits in semiconductor structures. Computer Physics Communications, 2002, 146, 331-338.	3.0	27
42	Morphology of fine-particle monolayers deposited on nanopatterned substrates. Physical Review E, 2008, 77, 031603.	0.8	27
43	Synthesis of dispersed metal particles for applications in photovoltaics, catalysis, and electronics. Journal of Solid State Electrochemistry, 2013, 17, 279-297.	1.2	27
44	Biomolecular Release from Alginateâ€modified Electrode Triggered by Chemical Inputs Processed through a Biocatalytic Cascade – Integration of Biomolecular Computing and Actuation. Electroanalysis, 2018, 30, 426-435.	1.5	27
45	Nuclear-spin qubit dephasing time in the integer quantum Hall effect regime. Physical Review B, 2001, 63, .	1.1	25
46	Kinetic Model for a Threshold Filter in an Enzymatic System for Bioanalytical and Biocomputing Applications. Journal of Physical Chemistry B, 2014, 118, 12435-12443.	1.2	24
47	SHORT-TIME DECOHERENCE AND DEVIATION FROM PURE QUANTUM STATES. Modern Physics Letters B, 2002, 16, 459-465.	1.0	23
48	Additivity of decoherence measures for multiqubit quantum systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 328, 87-93.	0.9	23
49	Morphology of Nanoclusters and Nanopillars Formed in Nonequilibrium Surface Growth for Catalysis Applications. Langmuir, 2011, 27, 8554-8561.	1.6	23
50	Design of Digital Response in Enzyme-Based Bioanalytical Systems for Information Processing Applications. Journal of Physical Chemistry B, 2012, 116, 13690-13695.	1.2	23
51	Monte Carlo modeling of spin FETs controlled by spin–orbit interaction. Mathematics and Computers in Simulation, 2004, 65, 351-363.	2.4	22
52	Glucoseâ€Triggered Insulin Release from Fe ³⁺ â€Crossâ€linked Alginate Hydrogel: Experimental Study and Theoretical Modeling. ChemPhysChem, 2017, 18, 1541-1551.	1.0	22
53	Kinetic Monte Carlo model of breakup of nanowires into chains of nanoparticles. Journal of Applied Physics, 2017, 122, .	1.1	22
54	Diffusional growth of colloids. Journal of Chemical Physics, 1999, 110, 9254-9258.	1.2	21

VLADIMIR PRIVMAN

#	Article	IF	CITATIONS
55	Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors. Journal of Chemical Physics, 2008, 129, 184705.	1.2	18
56	Recent Theoretical Results for Nonequilibrium Deposition of Submicron Particles. Journal of Adhesion, 2000, 74, 421-440.	1.8	16
57	Learning through play. Nature Nanotechnology, 2010, 5, 767-768.	15.6	16
58	Error-Control and Digitalization Concepts for Chemical and Biomolecular Information Processing Systems. Journal of Computational and Theoretical Nanoscience, 2011, 8, 490-502.	0.4	16
59	Realization of Associative Memory in an Enzymatic Process: Toward Biomolecular Networks with Learning and Unlearning Functionalities. Journal of Physical Chemistry Letters, 2012, 3, 1234-1237.	2.1	16
60	Diffusion of Oligonucleotides from within Ironâ€Crossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 976-984.	1.0	15
61	Coherent interaction of spins induced by thermal bosonic environment. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 81-85.	0.9	13
62	Percolation modeling of conductance of self-healing composites. Physica A: Statistical Mechanics and Its Applications, 2007, 385, 543-550.	1.2	13
63	Three-dimensional percolation modeling of self-healing composites. Physical Review E, 2008, 78, 021104.	0.8	13
64	Formation of nanoclusters and nanopillars in nonequilibrium surface growth for catalysis applications: growth by diffusional transport of matter in solution synthesis. Heat and Mass Transfer, 2014, 50, 383-392.	1.2	13
65	Modeling of Growth Morphology of Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 24959-24966.	1.5	13
66	MEASUREMENT OF A QUANTUM SYSTEM COUPLED TO INDEPENDENT HEAT-BATH AND POINTER MODES. Modern Physics Letters B, 2000, 14, 303-312.	1.0	12
67	Nonequilibrium kinetic modeling of sintering of a layer of dispersed nanocrystals. CrystEngComm, 2014, 16, 10395-10409.	1.3	11
68	Can bio-inspired information processing steps be realized as synthetic biochemical processes?. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 219-228.	0.8	11
69	Mechanisms of interparticle bridging in sintering of dispersed nanoparticles. Journal of Coupled Systems and Multiscale Dynamics, 2014, 2, 91-99.	0.2	11
70	Experimental Realization of a Highâ€Quality Biochemical XOR Gate. ChemPhysChem, 2017, 18, 2908-2915.	1.0	10
71	Kinetics modeling of nanoparticle growth on and evaporation off nanotubes. Journal of Applied Physics, 2017, 121, .	1.1	9
72	EVALUATION OF DECOHERENCE FOR QUANTUM COMPUTING ARCHITECTURES: QUBIT SYSTEM SUBJECT TO TIME-DEPENDENT CONTROL. International Journal of Modern Physics B, 2006, 20, 1476-1495.	1.0	8

#	Article	IF	CITATIONS
73	SIRT6 knockout cells resist apoptosis initiation but not progression: a computational method to evaluate the progression of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1336-1343.	2.2	8
74	Exact Solutions of Low-Dimensional Reaction-Diffusion Systems. International Journal of Modern Physics B, 1997, 11, 109-114.	1.0	7
75	Onset of decoherence in open quantum systems. , 2003, , .		7
76	Nonequilibrium kinetic study of sintering of dispersed nanoparticles. CrystEngComm, 2013, 15, 7177.	1.3	7
77	Extended Linear Response for Bioanalytical Applications Using Multiple Enzymes. Analytical Chemistry, 2013, 85, 2027-2031.	3.2	7
78	Lattice percolation approach to 3D modeling of tissue aging. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 207-216.	1.2	7
79	Promises and Challenges in Continuous Tracking Utilizing Amino Acids in Skin Secretions for Active Multiâ€Factor Biometric Authentication for Cybersecurity. ChemPhysChem, 2017, 18, 1714-1720.	1.0	7
80	Percolation modeling of self-damaging of composite materials. Physica A: Statistical Mechanics and Its Applications, 2014, 405, 1-9.	1.2	6
81	Random sequential adsorption on imprecise lattice. Journal of Chemical Physics, 2016, 144, 244704.	1.2	6
82	Nonstandard convergence to jamming in random sequential adsorption: The case of patterned one-dimensional substrates. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 560-573.	1.2	6
83	EXACT RESULTS FOR 1D CONSERVED ORDER PARAMETER MODEL. Modern Physics Letters B, 1994, 08, 143-147.	1.0	5
84	Quantum dynamics of spins coupled by electrons in a one-dimensional channel. Physical Review B, 2005, 72, .	1.1	5
85	Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications. Sensors, 2016, 16, 1042.	2.1	5
86	Lattice percolation approach to numerical modelling of tissue aging. International Journal of Parallel, Emergent and Distributed Systems, 2016, 31, 1-19.	0.7	5
87	Quantitative Treatment of Decoherence. Topics in Applied Physics, 2009, , 141-167.	0.4	4
88	SECOND-ORDER DYNAMICS IN THE COLLECTIVE EVOLUTION OF COUPLED MAPS AND AUTOMATA. Modern Physics Letters B, 1992, 06, 1835-1841.	1.0	3
89	EXACT SOLUTION OF AN IRREVERSIBLE ONE-DIMENSIONAL MODEL WITH FULLY BIASED SPIN EXCHANGES. International Journal of Modern Physics B, 1996, 10, 3451-3459.	1.0	3
90	Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability. , 2009, , .		3

Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability. , 2009, , . 90

Vladimir Privman

#	Article	IF	CITATIONS
91	Design of High Quality Chemical XOR Gates with Noise Reduction. ChemPhysChem, 2017, 18, 1773-1781.	1.0	3
92	FINITE-RANGE SCALING IN THE KAC MODEL. Modern Physics Letters B, 1991, 05, 1031-1036.	1.0	2
93	LONGITUDINAL CORRELATION LENGTH IN DIRECTED PERCOLATION AND RELATED MODELS: A POSSIBLE NEW SCALING MECHANISM. Modern Physics Letters B, 1991, 05, 555-559.	1.0	2
94	Design of Gates for Quantum Computation: The NOT Gate. International Journal of Modern Physics B, 1997, 11, 2207-2215.	1.0	2
95	Design of Gates for Quantum Computation: The Three-Spin XOR Gate in Terms of Two-Spin Interactions. International Journal of Modern Physics B, 1998, 12, 591-600.	1.0	2
96	Synthesis of Silver Colloids: Experiment and Computational Model. , 2009, , .		2
97	Theoretical modeling expressions for networked enzymatic signal processing steps as logic gates optimized by filtering. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 30-43.	0.7	2
98	Modeling and Modifying Response of Biochemical Processes for Biocomputing and Biosensing Signal Processing. Emergence, Complexity and Computation, 2017, , 61-83.	0.2	2
99	DYNAMICS OF NONEQUILIBRIUM DEPOSITION WITH DIFFUSIONAL RELAXATION. , 1995, , 177-193.		2
100	Quantum Signal Splitting that Avoids Initialization of the Targets. Modern Physics Letters B, 1997, 11, 1277-1283.	1.0	1
101	Onset of Entanglement and Noise Cross-Correlations in Two-Qubit System Interacting with Common Bosonic Bath. , 2006, , .		1
102	Diffusion of Oligonucleotides from within Ironâ€Crossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 926-926.	1.0	1
103	Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis. Journal of Chemical Physics, 2016, 145, 094103.	1.2	1
104	Models of Size and Shape Control in Synthesis of Uniform Colloids and Nanocrystals. , 2012, , 1-24.		0
105	Vladimir Privman. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 157-158.	0.7	Ο