
Eduardo Bellini Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1506754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the Pozzolanic Activity of Glass Powder in Three Maximum Grain Sizes. Materials Research, 2021, 24, .	1.3	13
2	Surface properties of a new lithium disilicate glass-ceramic after grinding. Journal of Materials Science: Materials in Medicine, 2021, 32, 110.	3.6	1
3	Off-stoichiometry effects on crystal nucleation and growth kinetics in soda-lime-silicate glasses. The combeite (Na2O•2CaO•3SiO2) – devitrite (Na2O•3CaO•6SiO2) joint. Acta Materialia, 2020, 196, I	197-199.	18
4	Sintering and rounding kinetics of irregular glass particles. Journal of the American Ceramic Society, 2019, 102, 845-854.	3.8	12
5	Effect of non-stoichiometry on the crystal nucleation and growth in oxide glasses. Acta Materialia, 2019, 180, 317-328.	7.9	15
6	Simulation and experimental study of the particle size distribution and pore effect on the crystallization of glass powders. Acta Materialia, 2019, 175, 130-139.	7.9	17
7	Curvature dependence of the surface tension and crystal nucleation in liquids. International Journal of Applied Glass Science, 2019, 10, 57-68.	2.0	21
8	The shape of diopside glass particles probed by the non-isothermal crystallization kinetics and Differential Scanning Calorimetry. Journal of Non-Crystalline Solids, 2018, 497, 63-70.	3.1	3
9	Cathode-Ray Tube panel glass replaces frit in transparent glazes for ceramic tiles. Ceramics International, 2018, 44, 13790-13796.	4.8	15
10	Characterization of a Diamond Ground Y-TZP and Reversion of the Tetragonal to Monoclinic Transformation. Operative Dentistry, 2017, 42, 407-417.	1.2	11
11	On the Determination of the Concentration of Crystal Nuclei in Glasses by <scp>DSC</scp> . Journal of the American Ceramic Society, 2013, 96, 2817-2823.	3.8	6
12	Critical Analysis of Glass Stability Parameters and Application to Lithium Borate Glasses. Journal of the American Ceramic Society, 2011, 94, 3833-3841.	3.8	26
13	Mechanical and tribological properties of a sintered glass-ceramic compared to granite and porcelainized stoneware. Wear, 2011, 271, 875-880.	3.1	11
14	DSC Method for Determining the <i>Liquidus</i> Temperature of Glassâ€Forming Systems. Journal of the American Ceramic Society, 2010, 93, 3757-3763.	3.8	64
15	Effect of high pressure in the Li2O–2SiO2 crystallization. Journal of Non-Crystalline Solids, 2010, 356, 3004-3008.	3.1	18
16	Analytical Model for Heterogeneous Crystallization Kinetics of Spherical Glass Particles. Journal of the American Ceramic Society, 2009, 92, 2616-2618.	3.8	9
17	Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. Journal of Non-Crystalline Solids, 2009, 355, 2295-2301.	3.1	86
18	Surface and bulk residual stresses in Li2O·2SiO2 glass–ceramics. Journal of Non-Crystalline Solids, 2007, 353, 2307-2317.	3.1	42

#	Article	IF	CITATIONS
19	Can glass stability parameters infer glass forming ability?. Journal of Non-Crystalline Solids, 2005, 351, 3296-3308.	3.1	227
20	Kinetics and mechanisms of crystal growth and diffusion in a glass-forming liquid. Journal of Chemical Physics, 2004, 121, 8924-8928.	3.0	59
21	Nano vitrocerâmica de escória de aciaria. Quimica Nova, 2002, 25, 731-735.	0.3	6
22	Structure and mechanical properties of pyrope (Mg 3 Al 2 Si 3 O 12) glass: Effect of high pressure. International Journal of Applied Glass Science, 0, , .	2.0	3
23	Digital roadmapping in the pandemic: lessons from collaboration in the glass industry. Technology Analysis and Strategic Management, 0, , 1-15.	3.5	2