
M Todd Valerius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1506265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kidney repair and regeneration: perspectives of the NIDDK (Re)Building a Kidney consortium. Kidney International, 2022, 101, 845-853.	5.2	22
2	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	10.3	67
3	Orphan nuclear receptor COUPâ€TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Reports, 2021, 22, e51169.	4.5	16
4	Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney International, 2021, 100, 672-683.	5.2	21
5	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	10.3	68
6	Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 2020, 16, 686-696.	9.6	45
7	Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury. Nature Communications, 2020, 11, 3383.	12.8	61
8	Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 2019, 16, 255-262.	19.0	559
9	CRISPR/Cas9â€based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2018, 45, e50.	3.0	11
10	Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Developmental Biology, 2018, 440, 13-21.	2.0	33
11	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	6.1	58
12	Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development. Developmental Cell, 2017, 41, 349-365.e3.	7.0	61
13	Repair after nephron ablation reveals limitations of neonatal neonephrogenesis. JCI Insight, 2017, 2, e88848.	5.0	11
14	Human Kidney Organoids. Transplantation, 2016, 100, 1171-1172.	1.0	0
15	SOCS2 Balances Metabolic and Restorative Requirements during Liver Regeneration. Journal of Biological Chemistry, 2016, 291, 3346-3358.	3.4	19
16	Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 2015, 6, 8715.	12.8	571
17	Node retraction during patterning of the urinary collecting duct system. Journal of Anatomy, 2015, 226, 13-21.	1.5	13
18	Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33, 1193-1200.	17.5	694

M TODD VALERIUS

#	Article	IF	CITATIONS
19	IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. Journal of Clinical Investigation, 2015, 125, 3198-3214.	8.2	108
20	Rapid and Efficient Differentiation of Human Pluripotent Stem Cells into Intermediate Mesoderm That Forms Tubules Expressing Kidney Proximal Tubular Markers. Journal of the American Society of Nephrology: JASN, 2014, 25, 1211-1225.	6.1	271
21	Orphan Nuclear Receptor Nur77 Promotes Acute Kidney Injury and Renal Epithelial Apoptosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 674-686.	6.1	45
22	Bowman'sÎ ² -Catenin. Journal of the American Society of Nephrology: JASN, 2012, 23, 3-4.	6.1	5
23	Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development (Cambridge), 2012, 139, 1863-1873.	2.5	51
24	Six2 and Wnt Regulate Self-Renewal and Commitment of Nephron Progenitors through Shared Gene Regulatory Networks. Developmental Cell, 2012, 23, 637-651.	7.0	229
25	A Genome-Wide Screen to Identify Transcription Factors Expressed in Pelvic Ganglia of the Lower Urinary Tract. Frontiers in Neuroscience, 2012, 6, 130.	2.8	17
26	The Rejection Barrier to Induced Pluripotent Stem Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 1583-1586.	6.1	0
27	Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development (Cambridge), 2011, 138, 4245-4254.	2.5	81
28	Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney International, 2011, 79, 317-330.	5.2	147
29	Fate Tracing Reveals the Pericyte and Not Epithelial Origin of Myofibroblasts in Kidney Fibrosis. American Journal of Pathology, 2010, 176, 85-97.	3.8	1,281
30	Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution. Developmental Cell, 2009, 16, 482.	7.0	2
31	Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Developmental Biology, 2009, 332, 273-286.	2.0	221
32	Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expression Patterns, 2008, 8, 297-306.	0.8	22
33	Intrinsic Epithelial Cells Repair the Kidney after Injury. Cell Stem Cell, 2008, 2, 284-291.	11.1	752
34	Six2 Defines and Regulates a Multipotent Self-Renewing Nephron Progenitor Population throughout Mammalian Kidney Development. Cell Stem Cell, 2008, 3, 169-181.	11.1	815
35	Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution. Developmental Cell, 2008, 15, 781-791.	7.0	196
36	Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development (Cambridge), 2007, 134, 801-811.	2.5	310

M TODD VALERIUS

#	Article	IF	CITATIONS
37	Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development (Cambridge), 2007, 134, 2533-2539.	2.5	319
38	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
39	Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression Analysis. Science, 2004, 306, 2255-2257.	12.6	390
40	Recent genetic studies of mouse kidney development. Current Opinion in Genetics and Development, 2004, 14, 550-557.	3.3	93
41	<i>Hoxa 11</i> is upstream of <i>Integrin</i> α <i>8</i> expression in the developing kidney. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8090-8095.	7.1	40
42	Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mechanisms of Development, 2002, 110, 151-164.	1.7	50
43	Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mechanisms of Development, 2002, 112, 219-232.	1.7	72
44	Using Progenitor Cells and Gene Chips to Define Genetic Pathways. , 2002, 185, 269-284.		2
45	Gsh-1: A novel murine homeobox gene expressed in the central nervous system. Developmental Dynamics, 1995, 203, 337-351.	1.8	101