Evagelia Kontou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15056/publications.pdf Version: 2024-02-01

EVACEUA KONTOU

#	Article	IF	CITATIONS
1	Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Composites Part B: Engineering, 2015, 80, 134-144.	12.0	92
2	Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. Journal of Applied Polymer Science, 2011, 122, 1519-1529.	2.6	85
3	The effect of silica nanoparticles on the thermomechanical properties of polystyrene. Journal of Applied Polymer Science, 2007, 105, 1723-1731.	2.6	72
4	The effect of surface treatment on the performance of flax/biodegradable composites. Composites Part B: Engineering, 2016, 106, 88-98.	12.0	58
5	Thermomechanical properties and rheological behavior of biodegradable composites. Polymer Composites, 2014, 35, 1140-1149.	4.6	49
6	Effects of CNTs on thermal transitions, thermal diffusivity and electrical conductivity in nanocomposites: comparison between an amorphous and a semicrystalline polymer matrix. Soft Matter, 2019, 15, 1813-1824.	2.7	46
7	Effect of LDPE on the thermomechanical properties of LLDPE-based films. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1712-1727.	2.1	28
8	Micromechanical behaviour of particulate polymer nanocomposites. Polymer, 2008, 49, 1934-1942.	3.8	27
9	The role of nanofillers on the degradation behavior of polylactic acid. Polymer Composites, 2012, 33, 282-294.	4.6	27
10	Τe effect of woodâ€fiber type on the thermomechanical performance of a biodegradable polymer matrix. Journal of Applied Polymer Science, 2015, 132, .	2.6	27
11	Viscoplastic deformation of an epoxy resin at elevated temperatures. Journal of Applied Polymer Science, 2006, 101, 2027-2033.	2.6	26
12	Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 2011, 119, 472-481.	2.6	23
13	Aging of packaging films in the marine environment. Polymer Engineering and Science, 2019, 59, E432.	3.1	23
14	Thermomechanical behavior of metallocene ethylene-α-olefin copolymers. European Polymer Journal, 2002, 38, 2477-2487.	5.4	22
15	Nonlinear viscoelastic model for the prediction of double yielding in a linear low-density polyethylene film. Journal of Applied Polymer Science, 2004, 91, 3519-3527.	2.6	21
16	Τe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid. Journal of Biomaterials Applications, 2014, 29, 662-674.	2.4	21
17	Tensile creep behavior of unidirectional glass-fiber polymer composites. Polymer Composites, 2005, 26, 287-292.	4.6	18
18	Viscoplastic response and creep failure time prediction of polymers based on the transient network model. Mechanics of Time-Dependent Materials, 2014, 18, 373-386.	4.4	16

Evagelia Kontou

#	Article	IF	CITATIONS
19	Thermomechanical characterization of basalt fiber reinforced biodegradable polymers. Polymer Composites, 2019, 40, 4340-4350.	4.6	16
20	The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites. Polymer Testing, 2021, 95, 107102.	4.8	13
21	Application of finite strain viscoplasticity to polymeric fiber composites. International Journal of Plasticity, 2006, 22, 1287-1303.	8.8	12
22	Nonlinear viscoelastic modeling of soft polymers. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
23	Non-linear viscoplastic behavior of fiber reinforced polymer composites. Composites Science and Technology, 2004, 64, 2333-2340.	7.8	11
24	Preparation and thermomechanical characterization of metallocene linear lowâ€density polyethylene/carbon nanotube nanocomposites. Polymer Composites, 2019, 40, E1263-E1273.	4.6	11
25	Fractional viscoelastic models for interconverting linear viscoelastic functions of various polymeric structures. Rheologica Acta, 2019, 58, 307-320.	2.4	11
26	Synthesis and characterization of polycyanurate/montmorillonite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1036-1049.	2.1	10
27	Lower and higher strain regime modeling of cyclic viscoplastic response of an amorphous glassy polymer. International Journal of Solids and Structures, 2016, 97-98, 489-495.	2.7	8
28	Comparing interconversion methods between linear viscoelastic material functions. Mechanics of Time-Dependent Materials, 2018, 22, 401-419.	4.4	8
29	Tensile strain-rate response of polymeric fiber composites. Polymer Composites, 2005, 26, 572-579.	4.6	7
30	Thermomechanicalâ€electrical properties and micromechanics modeling of linear low density polyethylene reinforced with multiâ€walled carbon nanotubes. Polymer Composites, 2018, 39, E1118.	4.6	7
31	Modeling of the elastic stiffness of biobased polymer nanocomposites. Journal of Reinforced Plastics and Composites, 2014, 33, 942-952.	3.1	6
32	Structure–properties investigations in hydrophilic nanocomposites based on polyurethane/poly(2–hydroxyethyl methacrylate) semiâ€interpenetrating polymer networks and nanofiller densil for biomedical application. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
33	Evaluation of fundamental viscoelastic functions by a nonlinear viscoelastic model. Polymer Engineering and Science, 2017, 57, 1389-1395.	3.1	6
34	Thermomechanical performance of biodegradable poly (lactic acid)/carbonaceous hybrid nanocomposites: Comparative study. Polymer Composites, 2022, 43, 1900-1915.	4.6	6
35	Effect of thermal treatments on the yielding of polycarbonate. Journal of Applied Polymer Science, 2005, 98, 796-805.	2.6	5
36	Modeling of viscoplastic cyclic loading behavior of polymers. Mechanics of Time-Dependent Materials, 2015, 19, 439-453.	4.4	5

Evagelia Kontou

#	Article	IF	CITATIONS
37	Comparing the rheological and reinforcing effects of graphene oxide on glassy and semicrystalline polymers. Polymer Engineering and Science, 2019, 59, 1933-1947.	3.1	5
38	Rheological constitutive equations for glassy polymers, based on trap phenomenology. Mechanics of Time-Dependent Materials, 2020, 24, 73-83.	4.4	5
39	Prediction of the elastic modulus of LLDPE/CNT nanocomposites by analytical modeling and finite element analysis. Materials Today Communications, 2020, 24, 101070.	1.9	4
40	Creep resistance of linear low density polyethylene/carbonaceous hybrid nanocomposites: Experiments and modeling. Journal of Applied Polymer Science, 2021, 138, 51196.	2.6	3
41	Stress–softening effect of SBR/nanocomposites by a phenomenological Gent–Zener viscoelastic model. Meccanica, 2018, 53, 2353-2362.	2.0	2
42	Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results. Acta Mechanica, 2020, 231, 353-361.	2.1	2
43	Modeling the compressive stress–strain response of polymeric foams. Journal of Applied Polymer Science, 2011, 121, 3262-3268.	2.6	1
44	A fractional transient model for the viscoplastic response of polymers based on a micro-mechanism of free volume distribution. Mechanics of Time-Dependent Materials, 2017, 21, 643-656.	4.4	1
45	Model Simulation of Creep and Thermal Ratcheting of Engineering Polymers. Macromolecular Theory and Simulations, 2022, 31, 2100043.	1.4	1
46	The effectiveness of interconversion methods based on the distributed nature of polymeric structure. Polymer Engineering and Science, 2021, 61, 1732-1741.	3.1	0