Patrick Lamers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renewable and Sustainable Energy Reviews, 2022, 161, 112409.	16.4	38
2	Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. Nature Communications, 2022, 13, .	12.8	35
3	Potential Socioeconomic and Environmental Effects of an Expanding U.S. Bioeconomy: An Assessment of Near-Commercial Cellulosic Biofuel Pathways. Environmental Science & Technology, 2021, 55, 5496-5505.	10.0	12
4	Applying a scienceâ€based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 2021, 13, 1210-1231.	5.6	49
5	Editorial: Developing and Deploying Negative Emission Technologies: System-Level Assessment and Rationalization. Frontiers in Climate, 2021, 3, .	2.8	2
6	Circular Bioeconomy Conceptsâ \in "A Perspective. Frontiers in Sustainability, 2021, 2, .	2.6	88
7	Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule, 2021, 5, 2479-2503.	24.0	160
8	Creating a harmonized time series of environmentally-extended input-output tables to assess the evolution of the US bioeconomy - A retrospective analysis of corn ethanol and soybean biodiesel. Journal of Cleaner Production, 2021, 321, 128890.	9.3	6
9	Investigating the future supply distribution of industrial grade wood pellets in the global bioenergy market. Biofuels, 2020, 11, 871-884.	2.4	5
10	Implications of climate change mitigation strategies on international bioenergy trade. Climatic Change, 2020, 163, 1639-1658.	3.6	32
11	The European wood pellets for heating market - Price developments, trade and market efficiency. Energy, 2020, 212, 118636.	8.8	16
12	European residential wood pellet trade and prices dataset. Data in Brief, 2020, 32, 106254.	1.0	3
13	The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels, Bioproducts and Biorefining, 2019, 13, 247-266.	3.7	47
14	The dynamics of the global wood pellet markets and trade – key regions, developments and impact factors. Biofuels, Bioproducts and Biorefining, 2019, 13, 267-280.	3.7	43
15	Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry. Applied Energy, 2018, 222, 621-636.	10.1	60
16	Time to tear down the pyramids? A critique of cascading hierarchies as a policy tool. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e279.	4.1	11
17	Biomass market dynamics supporting the largeâ€scale deployment of highâ€octane fuel production in the United States. GCB Bioenergy, 2018, 10, 460-472.	5.6	3
18	Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 561-569.	6.7	28

PATRICK LAMERS

#	Article	IF	CITATIONS
19	Comment on â€~Does replacing coal with wood lower CO 2 emissions? Dynamic lifecycle analysis of wood bioenergy'. Environmental Research Letters, 2018, 13, 128002.	5.2	9
20	Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 8790-8800.	6.7	18
21	Challenges and Opportunities for the Mobilisation of Forest Bioenergy in the Boreal and Temperate Biomes. , 2016, , 190-213.		7
22	Environmental Sustainability Aspects of Forest Biomass Mobilisation. , 2016, , 50-67.		5
23	Policy institutions and forest carbon. Nature Climate Change, 2016, 6, 805-805.	18.8	1
24	Challenges and Opportunities for International Trade in Forest Biomass. , 2016, , 127-164.		5
25	Global solid biomass trade for energy by 2020: an assessment of potential import streams and supply costs to Northâ€West Europe under different sustainability constraints. GCB Bioenergy, 2015, 7, 618-634.	5.6	71
26	Strategic supply system design – a holistic evaluation of operational and production cost for a biorefinery supply chain. Biofuels, Bioproducts and Biorefining, 2015, 9, 648-660.	3.7	69
27	Techno-economic analysis of decentralized biomass processing depots. Bioresource Technology, 2015, 194, 205-213.	9.6	138
28	Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy, 2014, 6, 44-60.	5.6	67
29	Developments in International Liquid Biofuel Trade. Lecture Notes in Energy, 2014, , 17-40.	0.3	8
30	Global Woody Biomass Trade for Energy. Lecture Notes in Energy, 2014, , 41-63.	0.3	8
31	Clobal biomass potentials under sustainability restrictions defined by the European Renewable Energy Directive 2009/28/ <scp>EC</scp> . GCB Bioenergy, 2013, 5, 652-663.	5.6	31
32	Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests. Biomass and Bioenergy, 2013, 55, 212-226.	5.7	60
33	The â€~debt' is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels, Bioproducts and Biorefining, 2013, 7, 373-385.	3.7	120
34	Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors. Renewable and Sustainable Energy Reviews, 2012, 16, 3176-3199.	16.4	150
35	Policy, Financing and Implementation. , 2011, , 865-950.		23
36	International bioenergy trade—A review of past developments in the liquid biofuel market. Renewable and Sustainable Energy Reviews, 2011, 15, 2655-2676.	16.4	175

PATRICK LAMERS

#	Article	IF	CITATIONS
37	Design options for cooperation mechanisms under the new European renewable energy directive. Energy Policy, 2010, 38, 4679-4691.	8.8	44
38	The emerging liquid biofuel market in Argentina: Implications for domestic demand and international trade. Energy Policy, 2008, 36, 1479-1490.	8.8	90
39	ALTERNATIVE ENERGY SOURCES IN TRANSITION COUNTRIES. THE CASE OF BIO-ENERGY IN UKRAINE. Environmental Engineering and Management Journal, 2007, 6, 3-11.	0.6	5
40	ALTERNATIVE ENERGY SOURCES IN TRANSITION COUNTRIES. THE CASE OF BIO-ENERGY IN THE UKRAINE. Environmental Engineering and Management Journal, 2006, 5, 471-486.	0.6	3