
Yena Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505590/publications.pdf Version: 2024-02-01

VENIA KINA

#	Article	IF	CITATIONS
1	Synthesis and Electrocatalytic Activity of Auâ^'Pd Alloy Nanodendrites for Ethanol Oxidation. Journal of Physical Chemistry C, 2010, 114, 7689-7693.	3.1	217
2	Ultrathin Free‧tanding Ternaryâ€Alloy Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 2753-2758.	13.8	197
3	Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angewandte Chemie - International Edition, 2010, 49, 10197-10201.	13.8	129
4	Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126803.	12.7	112
5	Facile Synthesis of Nanoporous Transition Metalâ€Based Phosphates for Oxygen Evolution Reaction. ChemCatChem, 2020, 12, 2091-2096.	3.7	106
6	Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition. ACS Catalysis, 2019, 9, 819-826.	11.2	88
7	Nobleâ€Metal Nanocrystals with Controlled Facets for Electrocatalysis. Chemistry - an Asian Journal, 2016, 11, 2224-2239.	3.3	56
8	Trisoctahedral Au–Pd Alloy Nanocrystals with Highâ€index Facets and Their Excellent Catalytic Performance. Chemistry - A European Journal, 2012, 18, 16626-16630.	3.3	42
9	Oneâ€Pot Synthesis and Electrocatalytic Properties of Pd@Pt Coreâ€5hell Nanocrystals with Tailored Morphologies. Chemistry - A European Journal, 2014, 20, 7901-7905.	3.3	41
10	One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 25842-25849.	10.3	41
11	A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly. Journal of Materials Chemistry A, 2020, 8, 21016-21025.	10.3	35
12	Ultrathin Free‣tanding Ternaryâ€Alloy Nanosheets. Angewandte Chemie, 2016, 128, 2803-2808.	2.0	34
13	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	5.6	32
14	Tailored Design of Mesoporous PdCu Nanospheres with Different Compositions Using Polymeric Micelles. ACS Applied Materials & amp; Interfaces, 2019, 11, 36544-36552.	8.0	26
15	Oneâ€Pot Synthesis of CeO ₂ ‣upported Pd–Cuâ€Alloy Nanocubes with High Catalytic Activity. Chemistry - A European Journal, 2013, 19, 8053-8057.	3.3	21
16	Shape-controlled Pd nanocrystal–polyaniline heteronanostructures with modulated polyaniline thickness for efficient electrochemical ethanol oxidation. Journal of Materials Chemistry A, 2019, 7, 22029-22035.	10.3	19
17	Hard-templated preparation of mesoporous cobalt phosphide as an oxygen evolution electrocatalyst. Electrochemistry Communications, 2019, 104, 106476.	4.7	17
18	Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 2019, 9, 25240-25247.	3.6	16

Υένα Κιμ

#	Article	IF	CITATIONS
19	Tunable Concave Surface Features of Mesoporous Palladium Nanocrystals Prepared from Supramolecular Micellar Templates. ACS Applied Materials & Interfaces, 2020, 12, 51357-51365.	8.0	16
20	Controlled synthesis of highly multi-branched Pt-based alloy nanocrystals with high catalytic performance. CrystEngComm, 2016, 18, 2356-2362.	2.6	14
21	Controlled synthesis of mesoporous single-crystalline TiO2 nanoparticles for efficient photocatalytic H2 evolution. Journal of Hazardous Materials, 2020, 391, 122530.	12.4	14
22	Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte. Journal of Physical Chemistry C, 2020, 124, 20135-20142.	3.1	12
23	One-pot synthesis of Pd@Pt core–shell nanocrystals for electrocatalysis: control of crystal morphology with polyoxometalate. CrystEngComm, 2016, 18, 6029-6034.	2.6	9
24	Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 1. Instability of Two-Dimensional Nucleation in an Electric Double Layer. Journal of Physical Chemistry B, 2020, 124, 11854-11869.	2.6	8
25	Excess heat production in the redox couple reaction of ferricyanide and ferrocyanide. Scientific Reports, 2020, 10, 20072.	3.3	7
26	Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors. Electrochimica Acta, 2021, 374, 137971.	5.2	7
27	Controlled Synthesis of Mesoporous Pt, Pt-Pd and Pt-Pd-Rh Nanoparticles in Aqueous Nonionic Surfactant Solution. Bulletin of the Chemical Society of Japan, 2020, 93, 455-460.	3.2	5
28	Enhancing the Activity of Platinumâ€Based Nanocrystal Catalysts for Organic Synthesis through Electronic Structure Modification. ChemCatChem, 2016, 8, 2450-2454.	3.7	3
29	Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 2. Flow-Mode Transition from Laminar MHD Flow to Convection Cells with Two-Dimensional (2D) Nucleation. Journal of Physical Chemistry B, 2020, 124, 11870-11881.	2.6	2