Michael R Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell and Developmental Biology, 2015, 40, 41-51.	5.0	675
2	Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 2015, 6, 11327-11341.	1.8	289
3	Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 2018, 7, 1505403.	12.2	286
4	Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor Outcome. Cancer Research, 2016, 76, 4948-4958.	0.9	147
5	MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017, 77, 2306-2317.	0.9	119
6	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	30.7	113
7	The current evidence on statin use and prostate cancer prevention: are we there yet?. Nature Reviews Urology, 2017, 14, 107-119.	3.8	111
8	Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. Journal of Pathology, 2013, 231, 77-87.	4.5	93
9	CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer. Cancer Research, 2017, 77, 1662-1673.	0.9	83
10	RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocrine-Related Cancer, 2014, 21, 311-326.	3.1	74
11	Serum cholesterol and risk of high-grade prostate cancer: results from the REDUCE study. Prostate Cancer and Prostatic Diseases, 2018, 21, 252-259.	3.9	71
12	Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells. Cancer Biology and Therapy, 2014, 15, 409-418.	3.4	64
13	Large and small extracellular vesicles released by glioma cells <i>in vitro</i> and <i>in vivo</i> . Journal of Extracellular Vesicles, 2020, 9, 1689784.	12.2	57
14	Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78, 6086-6097.	0.9	49
15	Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Scientific Reports, 2015, 5, 12136.	3.3	48
16	Comparative Genomics Reveals Distinct Immune-oncologic Pathways in African American Men with Prostate Cancer. Clinical Cancer Research, 2021, 27, 320-329.	7.0	46
17	High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology, 2017, 14, 305-316.	3.1	43
18	Genes involved in prostate cancer progression determine MRI visibility. Theranostics, 2018, 8, 1752-1765.	10.0	43

2

MICHAEL R FREEMAN

#	Article	IF	CITATIONS
19	A Transcriptional Regulatory Loop of Master Regulator Transcription Factors, PPARG, and Fatty Acid Synthesis Promotes Esophageal Adenocarcinoma. Cancer Research, 2021, 81, 1216-1229.	0.9	41
20	Comprehensive palmitoylâ€proteomic analysis identifies distinct protein signatures for large and small cancerâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1764192.	12.2	37
21	27-Hydroxycholesterol Impairs Plasma Membrane Lipid Raft Signaling as Evidenced by Inhibition of IL6–JAK–STAT3 Signaling in Prostate Cancer Cells. Molecular Cancer Research, 2020, 18, 671-684.	3.4	35
22	Cultured circulating tumor cells and their derived xenografts for personalized oncology. Asian Journal of Urology, 2016, 3, 240-253.	1.2	33
23	Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells. Oncotarget, 2016, 7, 84645-84657.	1.8	33
24	Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- <i>S</i> -Acylated Proteins and Enables Deep <i>S</i> -Acylproteomic Analysis. Analytical Chemistry, 2019, 91, 9858-9866.	6.5	32
25	SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget, 2015, 6, 44072-44083.	1.8	29
26	Keratin 8 is a potential self-antigen in the coronary artery disease immunopeptidome: A translational approach. PLoS ONE, 2019, 14, e0213025.	2.5	28
27	Personalization of prostate cancer therapy through phosphoproteomics. Nature Reviews Urology, 2018, 15, 483-497.	3.8	25
28	Optimization of DNA extraction from human urinary samples for mycobiome community profiling. PLoS ONE, 2019, 14, e0210306.	2.5	25
29	Can Stroma Reaction Predict Cancer Lethality?. Clinical Cancer Research, 2013, 19, 4905-4907.	7.0	24
30	Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Communication and Signaling, 2014, 12, 44.	6.5	24
31	Validation of a genomic classifier for prediction of metastasis and prostate cancer-specific mortality in African-American men following radical prostatectomy in an equal access healthcare setting. Prostate Cancer and Prostatic Diseases, 2020, 23, 419-428.	3.9	22
32	Identification of the Transcription Factor Relationships Associated with Androgen Deprivation Therapy Response and Metastatic Progression in Prostate Cancer. Cancers, 2018, 10, 379.	3.7	21
33	Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model. Prostate, 2017, 77, 446-457.	2.3	20
34	Serum cholesterol levels and tumor growth in a PTEN-null transgenic mouse model of prostate cancer and Prostatic Diseases, 2018, 21, 196-203.	3.9	20
35	A Circulating Tumor Cell-RNA Assay for Assessment of Androgen Receptor Signaling Inhibitor Sensitivity in Metastatic Castration-Resistant Prostate Cancer. Theranostics, 2019, 9, 2812-2826.	10.0	20
36	Ethanol Induced Disordering of Pancreatic Acinar Cell Endoplasmic Reticulum: An ER Stress/Defective Unfolded Protein Response Model. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 479-497.	4.5	19

MICHAEL R FREEMAN

#	Article	IF	CITATIONS
37	Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nature Communications, 2022, 13, 669.	12.8	19
38	Technologies and Challenges in Proteomic Analysis of Protein S-acylation. Journal of Proteomics and Bioinformatics, 2014, 07, 256-263.	0.4	18
39	Regulation of inside-out \hat{I}^21 -integrin activation by CDCP1. Oncogene, 2018, 37, 2817-2836.	5.9	17
40	Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clinical Proteomics, 2019, 16, 15.	2.1	15
41	A comparative study of PCS and PAM50 prostate cancer classification schemes. Prostate Cancer and Prostatic Diseases, 2021, 24, 733-742.	3.9	14
42	Cholesterol-Lowering Intervention Decreases mTOR Complex 2 Signaling and Enhances Antitumor Immunity. Clinical Cancer Research, 2022, 28, 414-424.	7.0	14
43	Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential. BMC Cancer, 2020, 20, 398.	2.6	13
44	Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cellular and Molecular Life Sciences, 2021, 78, 2341-2353.	5.4	12
45	Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian Journal of Andrology, 2014, 16, 530.	1.6	12
46	Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection. OncoTargets and Therapy, 2021, Volume 14, 4819-4832.	2.0	11
47	Combination Androgen Receptor Inhibition and Docetaxel in Metastatic Castration-sensitive Prostate Cancer: The Next Step in First-line Treatment?. Clinical Genitourinary Cancer, 2020, 18, 425-428.	1.9	7
48	Variation in Molecularly Defined Prostate Tumor Subtypes by Self-identified Race. European Urology Open Science, 2022, 40, 19-26.	0.4	7
49	Universal Solid-Phase Reversible Sample-Prep for Concurrent Proteome and N-Glycome Characterization. Journal of Proteome Research, 2016, 15, 891-899.	3.7	5
50	Sex as a Determinant of Responses to a Coronary Artery Disease Self-Antigen Identified by Immune-Peptidomics. Frontiers in Immunology, 2020, 11, 694.	4.8	3
51	A Systems Approach to Prostate Cancer Classification—Response. Cancer Research, 2017, 77, 7133-7135.	0.9	2
52	Statin Therapy to Improve Prostate Cancer Outcomes: Who, When, and for How Long?. European Urology, 2018, 74, 702-703.	1.9	2
53	miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13, 5850.	3.7	2
54	BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics, 2022, 22, e2100172.	2.2	2

4

#	Article	IF	CITATIONS
55	Statin Drugs and Prostate Cancer: Time to Consider Proactive Strategies in Patients. Journal of Urology, 2013, 189, 1192-1193.	0.4	1
56	WALNUTS for POWER: A Protocol for the Polyphenols, Omega-3 Fatty Acids, Weight Loss, and EneRgy Randomized Controlled Trial. Current Developments in Nutrition, 2020, 4, nzaa044_015.	0.3	1
57	Nuclear size of circulating tumor cells in advanced prostate cancer to reveal a potential biomarker for clinical outcomes and androgen receptor indifference Journal of Clinical Oncology, 2021, 39, 167-167.	1.6	1
58	A phase II study of cabozantinib in metastatic castration-resistant prostate cancer (mCRPC) with visceral metastases (VM) with very small nuclear circulating tumor cell (vsnCTC) association studies Journal of Clinical Oncology, 2016, 34, 208-208.	1.6	1
59	Development of a circulating tumor cell-based RNA classifier for patients with castration-resistant prostate cancer: CTC-PCS/PAM50 Journal of Clinical Oncology, 2020, 38, e17509-e17509.	1.6	1
60	Prostate cancer CTC-RNA Assay: A new method for contemporary genomics and precision medicine via liquid biopsy Journal of Clinical Oncology, 2020, 38, 170-170.	1.6	1
61	A morphological subset of circulating tumor cells in advanced prostate cancer reveals a potential biomarker for clinical outcomes Journal of Clinical Oncology, 2021, 39, e17008-e17008.	1.6	0
62	A translational phase 2 study of cabozantinib in men with metastatic castration resistant prostate cancer with visceral metastases with characterization of circulating tumor cells and large oncosomes Journal of Clinical Oncology, 2014, 32, e16080-e16080.	1.6	0
63	A phase 2 study of cabozantinib in metastatic castrate resistant prostate cancer (mCRPC) with visceral metastases (VM) with very small nuclear circulating tumor cell (vsnCTC) association studies Journal of Clinical Oncology, 2016, 34, e16552-e16552.	1.6	0
64	NanoVelcro CTC purification systems for expressional analysis of circulating tumor cells from prostate cancer patients Journal of Clinical Oncology, 2018, 36, 295-295.	1.6	0
65	Dynamic variations in gene expressions of circulating tumor cells in metastatic castration-resistant prostate cancer patients in response to androgen receptor signaling inhibitors Journal of Clinical Oncology, 2018, 36, e17063-e17063.	1.6	0
66	A noninvasive prognostic biomarker for metastatic castration-resistant prostate cancer: Very small nuclear circulating tumor cells Journal of Clinical Oncology, 2019, 37, 179-179.	1.6	0
67	A circulating tumor cell RNA assay for dynamic assessment of androgen receptor signaling inhibitors sensitivity in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2019, 37, 157-157.	1.6	Ο
68	Ultradeep Palmitoylâ€proteomic Analysis Uncovers Over 1,300 Novel Human Palmitoylâ€proteins. FASEB Journal, 2019, 33, 632.15.	0.5	0
69	A circulating tumor cell specific RNA assay for assessment of androgen receptor signaling inhibitor sensitivity in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2019, 37, 5059-5059.	1.6	0
70	ONECUT2 as a new therapeutic target in androgen receptor-indifferent prostate cancer. Translational Cancer Research, 2019, 8, 2677-2679.	1.0	0
71	Circulating tumor cells with small nuclear size: A novel biomarker for survival and clinical outcomes in advanced prostate cancer Journal of Clinical Oncology, 2020, 38, e17512-e17512.	1.6	0
72	Association of very small nuclear circulating tumor cell (vsnCTC) with clinical outcomes in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2020, 38, 168-168.	1.6	0

#	Article	IF	CITATIONS
73	Loss of CDCP1 triggers FAK activation in detached prostate cancer cells. American Journal of Clinical and Experimental Urology, 2021, 9, 350-366.	0.4	0