Yin Zhifu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505470/publications.pdf

Version: 2024-02-01

1040056 996975 41 278 9 15 citations h-index g-index papers 41 41 41 189 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography. Lab on A Chip, 2014, 14, 1614-1621.	6.0	43
2	Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications. Advanced Materials Technologies, 2022, 7, .	5.8	37
3	A waveform design method for high DPI piezoelectric inkjet print-head based on numerical simulation. Microsystem Technologies, 2017, 23, 5365-5373.	2.0	20
4	Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique. Biomicrofluidics, 2014, 8, 066503.	2.4	17
5	SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography. Materials Science in Semiconductor Processing, 2018, 84, 144-150.	4.0	15
6	Structure-Induced Method for Circular Cross-Sectional Nanochannel Fabrication. Journal of Nanoscience and Nanotechnology, 2019, 19, 5750-5754.	0.9	15
7	Surface modification-assisted bonding of 2D polymer-based nanofluidic devices. Microfluidics and Nanofluidics, 2015, 18, 527-535.	2.2	12
8	Rapid prototyping of PET microfluidic chips by laser ablation and waterâ€soaking bonding method. Micro and Nano Letters, 2018, 13, 1302-1305.	1.3	11
9	New lithography technique based on electrohydrodynamic printing platform. Organic Electronics, 2019, 71, 279-283.	2.6	11
10	Analysis of polymer viscoelastic properties based on compressive creep tests during hot embossing for twoâ€dimensional polyethylene terephthalate nanochannels. Polymer Engineering and Science, 2014, 54, 2398-2406.	3.1	10
11	Multilayer patterning technique for micro- and nanofluidic chip fabrication. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	8
12	Fast Microfluidic Chip Fabrication Technique by Laser Erosion and Sticky Tape Assist Bonding Technique. Journal of Nanoscience and Nanotechnology, 2018, 18, 4082-4086.	0.9	8
13	Fabrication of SU-8 photoresist micro–nanofluidic chips by thermal imprinting and thermal bonding. Microsystem Technologies, 2020, 26, 861-866.	2.0	7
14	Fabrication of 2D silicon nano-mold by side etch lift-off method. Nanotechnology, 2021, 32, 285301.	2.6	6
15	A fast and simple bonding method for low cost microfluidic chip fabrication. Journal of Electrical Engineering, 2018, 69, 72-78.	0.7	5
16	Residual stress release for SU-8 structures by water assist ultrasonic. Microsystem Technologies, 2018, 24, 3141-3147.	2.0	5
17	Trajectory analysis of the charged droplet during electrohydrodynamic jet printing. Microsystem Technologies, 2021, 27, 2935-2941.	2.0	5
18	A novel bonding method for fabrication of PMMA nanofluidic chip with low deformation of the nano-trenches. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	4

#	Article	IF	CITATIONS
19	A low-cost fabrication method of nanostructures by ultraviolet proximity exposing lithography. AIP Advances, 2020, 10, 045221.	1.3	4
20	Low Cost and Simple PMMA Nozzle Fabrication by Laser Cutting and PDMS Curing Bonding. International Journal of Precision Engineering and Manufacturing, 2021, 22, 139-146.	2.2	4
21	Low autoâ€fluorescence fabrication methods for plastic nanoslits. IET Nanobiotechnology, 2016, 10, 75-80.	3.8	3
22	Effect of Gd doping on crystalline orientation, structural and electric properties of PZT thin films prepared by Sol-Gel methods. Integrated Ferroelectrics, 2017, 183, 100-109.	0.7	3
23	A new low-cost fabrication method of SU-8 micro–nano channels and needle tip in electro-hydrodynamic jet chips. Journal of Micromechanics and Microengineering, 2018, 28, 115015.	2.6	3
24	The study on electric field distribution and droplet trajectory during electrohydrodynamic jet printing. Microsystem Technologies, 2021, 27, 2745-2750.	2.0	3
25	The study of electrohydrodynamic printing by numerical simulation. Journal of Electrical Engineering, 2020, 71, 413-418.	0.7	3
26	Optimization of the profile of the nano-mold and the imprinting conditions by numerical simulation method. Microsystem Technologies, 2016, 22, 1105-1113.	2.0	2
27	A novel SU-8 nanofluidic chip fabrication technique based on traditional UV photolithography. Microsystem Technologies, 2017, 23, 5613-5619.	2.0	2
28	Polycarbonate Nanofluidic Chip Fabrication Technique by Hot Embossing and Thermal Bonding. Journal of Nanoscience and Nanotechnology, 2018, 18, 2530-2535.	0.9	2
29	The fabrication of integrated and three-layer SU-8 nozzles for electrohydrodynamic printing. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	2
30	The Fabrication of Polymethyl Methacrylate Nozzles for Electrohydrodynamic Printing. Journal of Nanoscience and Nanotechnology, 2021, 21, 1735-1741.	0.9	2
31	Fabrication of PDMS chips by laser engraving for protein enrichments. Journal of Electrical Engineering, 2022, 73, 43-49.	0.7	2
32	Experimental and Numerical Study on PDMS Collapse for Fabrication of Micro/Nanochannels. Journal of Electrical Engineering, 2016, 67, 414-420.	0.7	1
33	Numerical study on the shrinkage behavior of SU-8 patterns. Microsystem Technologies, 2017, 23, 4957-4964.	2.0	1
34	Manufacture of microfluidic chips using a gap-control method based on traditional 3D printing technique. Microsystem Technologies, 2019, 25, 1043-1050.	2.0	1
35	An economic and concise method to solve nozzle clogging issue during electro hydrodynamic printing. International Journal of Modern Physics B, 2019, 33, 1950260.	2.0	1
36	THE STUDY ON THE O2 PLASMA TREATMENT FOR BONDING OF SU-8 LAYERS. Surface Review and Letters, 2020, 27, 1950119.	1.1	0

YIN ZHIFU

#	Article	IF	CITATIONS
37	NUMERICAL STUDY ON BONDING OF PMMA NANOCHANNELS. Surface Review and Letters, 2020, 27, 1950213.	1.1	O
38	Numerical Study on the Electrohydrodynamic Jet Printing. Journal of Micro and Nano-Manufacturing, 2021, 9, .	0.7	0
39	A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing. Journal of Nanoscience and Nanotechnology, 2021, 21, 1672-1677.	0.9	O
40	A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips. Journal of Nanoscience and Nanotechnology, 2021, 21, 5635-5641.	0.9	0
41	Fabrication of Bottom Fillet Nano-Mold to Increase the Mold Lifetime. Journal of Nanoscience and Nanotechnology, 2017, 17, 8975-8980.	0.9	0