Halima Mouhib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15051/publications.pdf

Version: 2024-02-01

567281 642732 38 584 15 23 citations h-index g-index papers 38 38 38 568 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Structural insight from intermolecular interactions and energy framework analyses of 2-substituted 6,7,8,9-tetrahydro-11 <i>H</i> -pyrido[2,1-b]quinazolin-11-ones. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 416-426.	1.1	2
2	Large Amplitude Motions in Fruit Flavors: The Case of Alkyl Butyrates. ChemPhysChem, 2020, 21, 20-25.	2.1	3
3	The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.	3.0	28
4	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. PLoS Computational Biology, 2020, 16, e1007767.	3.2	29
5	The heavy atom structures and ³³ S quadrupole coupling constants of 2-thiophenecarboxaldehyde: insights from microwave spectroscopy. Molecular Physics, 2020, 118, e1728406.	1.7	12
6	Quantifying soft degrees of freedom in volatile organic compounds: insight from quantum chemistry and focused single molecule experiments. Physical Chemistry Chemical Physics, 2020, 22, 27850-27860.	2.8	2
7	Copper–Chalcogen Bonds in Olfaction: Accurate ab Initio Characterization of CuSH and CuOH. Journal of Physical Chemistry A, 2019, 123, 1177-1185.	2.5	O
8	Challenging the Molecular Parameters of Vetiver: Can 4,5â€Dimethylâ€3â€(3′â€methylbutâ€1′â€enâ€2′â€yl)â€4â€phenylcyclopentâ€2â€enâ€1â€one Mimi European Journal of Organic Chemistry, 2019, 2019, 2643-2652.	c Zizaenor	nes∮n Structur
9	The furan microsolvation blind challenge for quantum chemical methods: First steps. Journal of Chemical Physics, 2018, 148, 014301.	3.0	44
10	Highlights from the Faraday Discussion 296: quantum effects in small molecular systems, 10–12 September 2018, Edinburgh, United Kingdom. Chemical Communications, 2018, 54, 13620-13625.	4.1	O
11	Molecules in confinement in clusters, quantum solvents and matrices: general discussion. Faraday Discussions, 2018, 212, 569-601.	3.2	4
12	Competing Dispersive Interactions: From Small Energy Differences to Large Structural Effects in Methyl Jasmonate and Zingerone. Journal of Physical Chemistry Letters, 2018, 9, 5906-5914.	4.6	18
13	Communication through the furan ring: the conformational effect on the internal rotation of 5-methyl furfural studied by microwave spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 25577-25582.	2.8	14
14	Methyl Internal Rotation in the Microwave Spectrum of <i>o</i> â€Methyl Anisole. ChemPhysChem, 2017, 18, 1855-1859.	2.1	35
15	Molecular structure and ring tunneling of phenyl formate as observed by microwave spectroscopy and quantum chemistry. Journal of Molecular Spectroscopy, 2017, 337, 59-64.	1.2	14
16	Favored Conformations of Carbonyl Compounds: A Structural Study ofnâ€Octanal. ChemPhysChem, 2017, 18, 2631-2636.	2.1	9
17	Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide. Astronomy and Astrophysics, 2016, 589, A127.	5.1	17
18	Mechanical Unfolding of an Autotransporter Passenger Protein Reveals the Secretion Starting Point and Processive Transport Intermediates. ACS Nano, 2016, 10, 5710-5719.	14.6	21

#	Article	IF	Citations
19	Conformational dimorphism in <i>>o</i> >-nitrobenzoic acid: alternative ways to avoid the OO clash. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 566-571.	0.5	5
20	Conformational analysis of tert-butyl acetate using a combination of microwave spectroscopy and quantum chemical calculations. Journal of Molecular Spectroscopy, 2016, 322, 38-42.	1.2	9
21	Charge density of the biologically active molecule (2-oxo-1,3-benzoxazol-3(2 <i>H</i>)-yl)acetic acid. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 142-150.	1.1	4
22	Conformational ensemble of human \hat{l} ±-synuclein physiological form predicted by molecular simulations. Physical Chemistry Chemical Physics, 2016, 18, 5702-5706.	2.8	32
23	The microwave spectrum of allyl acetone. Journal of Molecular Spectroscopy, 2015, 312, 46-50.	1.2	10
24	From Cats and Blackcurrants: Structure and Dynamics of the Sulfurâ€Containing Cassis Odorant Cat Ketone. Chemistry and Biodiversity, 2014, 11, 1554-1566.	2.1	6
25	Understanding the structure and dynamic of odorants in the gas phase using a combination of microwave spectroscopy and quantum chemical calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 143001.	1.5	9
26	Quantum-Chemical Ab Initio Calculations on Ala-(C ₅ H ₅ Al) and Galabenzene (C ₅ H ₅ Ga). Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 349-359.	1.5	5
27	The Conformation of Pentanoates in the Solid and in the Gas Phase. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 303-312.	1.5	6
28	Sulfur-Containing Flavors: Gas Phase Structures of Dihydro-2-methyl-3-thiophenone. Journal of Physical Chemistry A, 2013, 117, 6652-6656.	2.5	10
29	Conformational Landscape of Diisopropyl Ketone: Quantum Chemical Calculations Validated by Microwave Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 311-314.	2.5	6
30	A touch of lavender: gas-phase structure and dynamics of the monoterpene linalool validated by microwave spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 10012.	2.8	29
31	Efficient Macrocyclization by a Novel Oxyâ€Oxoniaâ€Cope Reaction: Synthesis and Olfactory Properties of New Macrocyclic Musks. Chemistry - A European Journal, 2012, 18, 7010-7015.	3.3	28
32	Conformational Analysis of Green Apple Flavour: The Gasâ€Phase Structure of Ethyl Valerate Validated by Microwave Spectroscopy. ChemPhysChem, 2012, 13, 1297-1301.	2.1	28
33	Structural Studies on Ethyl Isovalerate by Microwave Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2011, 115, 118-122.	2.5	26
34	The Conformation of Odorants in Different States of Aggregation: A Joint Venture in Microwave Spectroscopy and X-ray Diffraction. ChemPhysChem, 2011, 12, 761-764.	2.1	21
35	Cassis Odor through Microwave Eyes: Olfactory Properties and Gas-Phase Structures of all the Cassyrane Stereoisomers and its Dihydro Derivatives. Angewandte Chemie - International Edition, 2011, 50, 5576-5580.	13.8	35
36	Two conformers of ethyl pivalate studied by microwave spectroscopy. Journal of Molecular Spectroscopy, 2010, 261, 59-62.	1.2	17

3

#	Article	lF	CITATIONS
37	The microwave spectrum of allyl acetate. Molecular Physics, 2010, 108, 763-770.	1.7	37
38	Impact of pathogenic mutations of the GLUT1 glucose transporter on channel dynamics using ConsDYN enhanced sampling. F1000Research, 0, 8, 322.	1.6	0