Maria Cristina Keightley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505066/publications.pdf

Version: 2024-02-01

34 papers 1,273 citations

20 h-index 28 g-index

35 all docs 35 does citations

35 times ranked 1813 citing authors

#	Article	IF	CITATIONS
1	Pioneer neutrophils release chromatin within in vivo swarms. ELife, 2021, 10, .	6.0	36
2	Frontline Science: Dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy. Journal of Leukocyte Biology, 2020, 108, 455-468.	3.3	34
3	Meta-Analysis of Grainyhead-Like Dependent Transcriptional Networks: A Roadmap for Identifying Novel Conserved Genetic Pathways. Genes, 2019, 10, 876.	2.4	7
4	ZBTB11 IS REQUIRED FOR HEMATOPOIETIC STEM CELL FUNCTION. Experimental Hematology, 2019, 76, S71.	0.4	0
5	Lattice Light Sheet Imaging of Neutrophil Cytoplasmic and Nuclear Plasticity in Vivo. Experimental Hematology, 2018, 64, S80.	0.4	O
6	The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Frontiers in Immunology, 2018, 9, 2867.	4.8	86
7	Splicing dysfunction and disease: The case of granulopoiesis. Seminars in Cell and Developmental Biology, 2018, 75, 23-39.	5.0	8
8	A GCSFR/CSF3R zebrafish mutant models the persistent basal neutrophil deficiency of severe congenital neutropenia. Scientific Reports, 2017, 7, 44455.	3.3	29
9	The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nature Communications, 2017, 8, 14911.	12.8	27
10	Intron retention enhances gene regulatory complexity in vertebrates. Genome Biology, 2017, 18, 216.	8.8	79
11	MED12 in hematopoietic stem cellsâ€"cell specific function despite ubiquitous expression. Stem Cell Investigation, 2017, 4, 3-3.	3.0	0
12	Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods in Cell Biology, 2016, 135, 259-288.	1.1	2
13	The PU.1 target gene Zbtb11 regulates neutrophil but not macrophage development via a novel zinc finger. Experimental Hematology, 2016, 44, S83.	0.4	0
14	Zbtb11, an Evolutionarily Conserved Pu.1-Regulated Transcriptional Repressor of TP53, Is Required for Neutrophil Development. Blood, 2015, 126, 1180-1180.	1.4	0
15	Minor class splicing shapes the zebrafish transcriptome during development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3062-3067.	7.1	64
16	Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. International Journal of Biochemistry and Cell Biology, 2014, 56, 92-106.	2.8	76
17	In vivo mutation of preâ€mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Letters, 2013, 587, 2150-2157.	2.8	52
18	Immune Priming: Mothering Males Modulate Immunity. Current Biology, 2013, 23, R76-R78.	3.9	4

#	Article	IF	CITATIONS
19	Neutrophil-Delivered Myeloperoxidase Dampens the Hydrogen Peroxide Burst after Tissue Wounding in Zebrafish. Current Biology, 2012, 22, 1818-1824.	3.9	117
20	Mediator Subunit 12 Is Required for Neutrophil Development in Zebrafish. PLoS ONE, 2011, 6, e23845.	2.5	20
21	Functional and Biochemical Characterization of ZBTB11, a Novel Protein Critical for Myelopoiesis. Blood, 2011, 118, 1309-1309.	1.4	O
22	Relationship of cytomegalovirus load assessed by real-time PCR to pp65 antigenemia in organ transplant recipients. Journal of Clinical Virology, 2008, 42, 335-342.	3.1	49
23	Diagnosis of Human Metapneumovirus Infection in Immunosuppressed Lung Transplant Recipients and Children Evaluated for Pertussis. Journal of Clinical Microbiology, 2007, 45, 548-552.	3.9	73
24	Clinical utility of CMV early and late transcript detection with NASBA in bronchoalveolar lavages. Journal of Clinical Virology, 2006, 37, 258-264.	3.1	12
25	Real-time NASBA detection of SARS-associated coronavirus and comparison with real-time reverse transcription-PCR. Journal of Medical Virology, 2005, 77, 602-608.	5.0	50
26	Steroid receptor isoforms: exception or rule?. Molecular and Cellular Endocrinology, 1998, 137, 1-5.	3.2	40
27	Structural Determinants of Cortisol Resistance in the Guinea Pig Glucocorticoid Receptor ¹ . Endocrinology, 1998, 139, 2479-2485.	2.8	47
28	Determinants of Specificity of Transactivation by the Mineralocorticoid or Glucocorticoid Receptor*. Endocrinology, 1997, 138, 2537-2543.	2.8	65
29	The molecular basis of RU486 resistance in the Tammar Wallaby, Macropus eugenii. Molecular and Cellular Endocrinology, 1996, 119, 169-174.	3.2	9
30	Anomalies in the Endocrine Axes of the Guinea Pig: Relevance to Human Physiology and Disease*. Endocrine Reviews, 1996, 17, 30-44.	20.1	40
31	Human Mineralocorticoid Receptor Genomic Structure and Identification of Expressed Isoforms. Journal of Biological Chemistry, 1995, 270, 21016-21020.	3.4	131
32	Cortisol resistance and the guinea pig glucocorticoid receptor. Steroids, 1995, 60, 87-92.	1.8	41
33	Unique sequences in the guinea pig glucocorticoid receptor induce constitutive transactivation and decrease steroid sensitivity Molecular Endocrinology, 1994, 8, 431-439.	3.7	44
34	Molecular cloning and sequencing of a guinea-pig pro-opiomelanocortin cDNA. Molecular and Cellular Endocrinology, 1991, 82, 89-98.	3.2	31