Hanlin Ou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1504865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sonosensitized Aggregation-Induced Emission Dots with Capacities of Immunogenic Cell Death Induction and Multivalent Blocking of Programmed Cell Death-Ligand 1 for Amplified Antitumor Immunotherapy. CCS Chemistry, 2022, 4, 501-514.	7.8	57
2	A wearable AlEgen-based lateral flow test strip for rapid detection of SARS-CoV-2 RBD protein and N protein. Cell Reports Physical Science, 2022, 3, 100740.	5.6	13
3	Amplification of Activated Near-Infrared Afterglow Luminescence by Introducing Twisted Molecular Geometry for Understanding Neutrophil-Involved Diseases. Journal of the American Chemical Society, 2022, 144, 3429-3441.	13.7	91
4	Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imagingâ€Modality Transformable Characteristics for Improved Biological Applications**. Angewandte Chemie, 2022, 134, .	2.0	5
5	Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imagingâ€Modality Transformable Characteristics for Improved Biological Applications**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
6	Near-infrared aggregation-induced emission nanodots for early diagnosis of tongue squamous cell carcinoma and sentinel lymph node mapping. Biomaterials Science, 2022, , .	5.4	4
7	A peptide-based aggregation-induced emission bioprobe for selective detection and photodynamic killing of Gram-negative bacteria. Biomaterials Science, 2021, 9, 437-442.	5.4	35
8	A two-in-one Janus NIR-II AlEgen with balanced absorption and emission for image-guided precision surgery. Materials Today Bio, 2021, 10, 100087.	5.5	17
9	Root Canal Disinfection Using Highly Effective Aggregation-Induced Emission Photosensitizer. ACS Applied Bio Materials, 2021, 4, 3796-3804.	4.6	10
10	Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Advanced Healthcare Materials, 2021, 10, e2001550.	7.6	49
11	Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy. Chemical Research in Chinese Universities, 2021, 37, 83-89.	2.6	18
12	Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate, 2021, 2, 95-113.	9.9	188
13	HCPT-peptide prodrug with tumor microenvironment -responsive morphology transformable characteristic for boosted bladder tumor chemotherapy. Journal of Controlled Release, 2021, 330, 715-725.	9.9	21
14	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infraredâ€II Fluorescence Imaging and Near Infraredâ€I Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2102213.	14.9	47
15	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermalâ€ŧoâ€Acoustic Conversion Efficiency for Adaptive Imageâ€Guided Cancer Surgery. Angewandte Chemie - International Edition, 2021, 60, 21047-21055.	13.8	44
16	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermalâ€ŧoâ€Acoustic Conversion Efficiency for Adaptive Imageâ€Guided Cancer Surgery. Angewandte Chemie, 2021, 133, 21215-21223.	2.0	28
17	High Performance Aggregation-Induced Emission Nanoprobes for Image-Guided Cancer Surgery. Acta Chimica Sinica, 2021, 79, 319.	1.4	9
18	Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Science China Chemistry, 2021, 64, 2180-2192.	8.2	17

HANLIN OU

#	Article	IF	CITATIONS
19	Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Advanced Materials, 2020, 32, e1806331.	21.0	231
20	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society, 2020, 142, 15146-15156.	13.7	177
21	Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Science China Materials, 2019, 62, 1740-1758.	6.3	45
22	Surface-adaptive nanoparticles with near-infrared aggregation-induced emission for image-guided tumor resection. Science China Life Sciences, 2019, 62, 1472-1480.	4.9	6
23	A novel strategy based on a ligand-switchable nanoparticle delivery system for deep tumor penetration. Nanoscale Horizons, 2019, 4, 658-666.	8.0	29
24	Manipulating the intramolecular motion of AlEgens for boosted biomedical applications. Science China Chemistry, 2019, 62, 929-932.	8.2	26
25	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.	13.7	465
26	Polymerization-induced self-assembly of large-scale iohexol nanoparticles as contrast agents for X-ray computed tomography imaging. Polymer Chemistry, 2018, 9, 2926-2935.	3.9	22
27	Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS Applied Materials & Interfaces, 2018, 10, 5296-5304.	8.0	39
28	Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chemical Communications, 2018, 54, 3985-3988.	4.1	36
29	Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomaterialia, 2018, 65, 339-348.	8.3	131
30	Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity. ACS Applied Materials & Interfaces, 2017, 9, 16880-16889.	8.0	126
31	Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics, 2016, 6, 1277-1292.	10.0	85
32	A surface-adaptive nanocarrier to prolong circulation time and enhance cellular uptake. Chemical Communications, 2015, 51, 14985-14988.	4.1	33