Kevin M Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150467/publications.pdf

Version: 2024-02-01

			516710	477307	
	30	1,670	16	29	
	papers	citations	h-index	g-index	
Ξ					
	20	20	20	2002	
	30	30	30	2892	
	all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 2006, 31, 487-531.	24.7	928
2	Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy and Environmental Science, 2015, 8, 2389-2395.	30.8	194
3	Tailoring Charge Density and Hydrogen Bonding of Imidazolium Copolymers for Efficient Gene Delivery. Biomacromolecules, 2011, 12, 2243-2250.	5.4	70
4	Multiblock Copolymers for Recycling Polyethylene–Poly(ethylene terephthalate) Mixed Waste. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9726-9735.	8.0	51
5	Correlating Structure with Thermal Properties for a Series of 1-Alkyl-4-methyl-1,2,4-triazolium Ionic Liquids. Journal of Organic Chemistry, 2013, 78, 4196-4201.	3.2	45
6	Marangoni Instability Driven Surface Relief Grating in an Azobenzene-Containing Polymer Film. Macromolecules, 2016, 49, 7069-7076.	4.8	39
7	Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer, 2016, 100, 1-9.	3.8	34
8	Synthesis and thermal analysis of crosslinked imidazolium-containing polyester networks prepared by Michael addition polymerization. Polymer, 2012, 53, 5666-5674.	3.8	27
9	Physicochemical and Thermal Properties for a Series of 1-Alkyl-4-methyl-1,2,4-triazolium Bis(trifluoromethylsulfonyl)imide lonic Liquids. Journal of Physical Chemistry B, 2014, 118, 9944-9951.	2.6	27
10	Novel Michael Addition Networks Containing Poly(propylene glycol) Telechelic Oligomers. Macromolecular Chemistry and Physics, 2006, 207, 1324-1333.	2.2	25
11	Thermomechanical and Conductive Properties of Thiol–Ene Poly(ionic liquid) Networks Containing Backbone and Pendant Imidazolium Groups. Industrial & Engineering Chemistry Research, 2018, 57, 16526-16536.	3.7	23
12	Crosslinked imidazolium-containing polyester networks containing a pendant imidazolium group: Swelling studies and thermal properties. Polymer, 2014, 55, 3320-3329.	3.8	22
13	The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ionic liquids. Journal of Molecular Liquids, 2015, 210, 286-292.	4.9	21
14	Michael Addition Reaction Kinetics of Acetoacetates and Acrylates for the Formation of Polymeric Networks. Progress in Reaction Kinetics and Mechanism, 2007, 32, 165-194.	2.1	19
15	Covalently Crosslinked 1,2,3-Triazolium-Containing Polyester Networks: Thermal, Mechanical, and Conductive Properties. ACS Omega, 2018, 3, 13442-13453.	3.5	18
16	Novel michael addition networks containing urethane hydrogen bonding. Journal of Polymer Science Part A, 2007, 45, 4118-4128.	2.3	17
17	Covalently crosslinked 1,2,4-triazolium-containing polyester networks prepared by Michael addition polymerization. Polymer, 2015, 72, 1-9.	3.8	15
18	1-Alkyl-3-methyl-1,2,3-triazolium [NTf2] ionic liquids: synthesis and properties. Tetrahedron Letters, 2016, 57, 206-209.	1.4	12

#	Article	IF	CITATIONS
19	Influence of Anion and Crosslink Density on the Ionic Conductivity of 1,2,3â€Triazoliumâ€Based Poly(ionic) Tj ET	Qq1 ₂ 1 0.7	'84314 rgBT
20	Self-healing behaviour of furan–maleimide poly(ionic liquid) covalent adaptable networks. Polymer Chemistry, 2020, 11, 5321-5326.	3.9	12
21	1,3â€Bis(2′â€hydroxyethyl)imidazolium ionic liquids: correlating structure and properties with anion hydrogen bonding ability. Journal of Physical Organic Chemistry, 2014, 27, 2-9.	1.9	11
22	Probing the dynamic and rehealing behavior of crosslinked polyester networks containing thermoreversible thiol-Michael bonds. Polymer, 2018, 145, 286-293.	3.8	11
23	Designing Ionic Liquid-Derived Polymer Composites from Poly(Ionic Liquid)–Ionene Semi-interpenetrating Networks. ACS Applied Polymer Materials, 2021, 3, 1995-2004.	4.4	9
24	Synthesis and Evaluation of Cellulose-Based, 1,2,3-Triazolium-Functionalized Polymerized Ionic Liquids: Thermal Transitions, Ionic Conductivities, and Morphological Properties. ACS Applied Polymer Materials, 2021, 3, 1097-1106.	4.4	8
25	Michael addition kinetics of ethyl acetoacetate and 2-ethylhexyl acrylate in ionic liquids. Tetrahedron Letters, 2012, 53, 1855-1858.	1.4	7
26	Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. Polymer, 2021, 222, 123641.	3.8	5
27	Correlating structure with ionic conductivity in bis(phosphonium)â€containing [NTf ₂] thiol–ene networks. Polymer International, 2019, 68, 1557-1565.	3.1	4
28	Analysis of Plastic-Derived Fuel Oil Produced from High- and Low-Density Polyethylene. Recycling, 2022, 7, 29.	5.0	3
29	Thiolâ€yne photoclick polymerization as a method for preparing imidazoliumâ€containing ionene networks. Journal of Polymer Science, 2021, 59, 3009.	3.8	1
30	In Focus: Poly(ionic liquid)s in Polymer Science and Engineering at the Fall 2018 American Chemical Society National Meeting. Polymer International, 2019, 68, 1545-1546.	3.1	0