
Robert L Beschta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1504316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Riparian vegetation composition and diversity shows resilience following cessation of livestock grazing in northeastern Oregon, USA. PLoS ONE, 2022, 17, e0250136.	1.1	5
2	Large carnivore extirpation linked to loss of overstory aspen in Yellowstone. Food Webs, 2020, 22, e00140.	0.5	2
3	Bison limit ecosystem recovery in northern Yellowstone. Food Webs, 2020, 23, e00142.	0.5	26
4	Yellowstone's Prehistoric Bison: A Comment on Keigley (2019). Rangelands, 2019, 41, 149-151.	0.9	5
5	Trophic cascades and Yellowstone's aspen: A reply to Fleming (2019). Forest Ecology and Management, 2019, 454, 117344.	1.4	0
6	Can large carnivores change streams via a trophic cascade?. Ecohydrology, 2019, 12, e2048.	1.1	25
7	Wolfâ€triggered trophic cascades and stream channel dynamics in Olympic National Park: a comment on East <i>et al</i> . (2017). Earth Surface Processes and Landforms, 2018, 43, 930-935.	1.2	0
8	Trophic cascades at multiple spatial scales shape recovery of young aspen in Yellowstone. Forest Ecology and Management, 2018, 413, 62-69.	1.4	32
9	Aspen recruitment in the Yellowstone region linked to reducedÂherbivory after large carnivore restoration. Ecosphere, 2018, 9, e02376.	1.0	21
10	Long-term aspen dynamics, trophic cascades, and climate in northern Yellowstone National Park. Canadian Journal of Forest Research, 2016, 46, 548-556.	0.8	20
11	Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biological Conservation, 2016, 198, 93-103.	1.9	112
12	Divergent patterns of riparian cottonwood recovery after the return of wolves in Yellowstone, USA. Ecohydrology, 2015, 8, 58-66.	1.1	23
13	Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?. Ecology, 2015, 96, 252-263.	1.5	65
14	Trophic cascades from wolves to alders in Yellowstone. Forest Ecology and Management, 2015, 354, 254-260.	1.4	27
15	Wolves trigger a trophic cascade to berries as alternative food for grizzly bears. Journal of Animal Ecology, 2015, 84, 652-654.	1.3	5
16	Trophic cascades from wolves to grizzly bears in <scp>Y</scp> ellowstone. Journal of Animal Ecology, 2014, 83, 223-233.	1.3	91
17	Status and Ecological Effects of the World's Largest Carnivores. Science, 2014, 343, 1241484.	6.0	2,390
18	After long-term decline, are aspen recovering in northern Yellowstone?. Forest Ecology and Management, 2014, 329, 108-117.	1.4	28

2

ROBERT L BESCHTA

#	Article	IF	CITATIONS
19	Long-term livestock grazing alters aspen age structure in the northwestern Great Basin. Forest Ecology and Management, 2014, 329, 30-36.	1.4	10
20	Reducing Livestock Effects on Public Lands in the Western United States as the Climate Changes: A Reply to Svejcar et al. Environmental Management, 2014, 53, 1039-1042.	1.2	3
21	Predation risk, elk, and aspen: comment. Ecology, 2014, 95, 2669-2671.	1.5	10
22	Adapting to Climate Change on Western Public Lands: Addressing the Ecological Effects of Domestic, Wild, and Feral Ungulates. Environmental Management, 2013, 51, 474-491.	1.2	131
23	Are wolves saving Yellowstone's aspen? A landscapeâ€level test of a behaviorally mediated trophic cascade: comment. Ecology, 2013, 94, 1420-1425.	1.5	43
24	Wolves and lynx: Plausible ideas make for testable hypotheses. Wildlife Society Bulletin, 2012, 36, 572-577.	1.6	3
25	Trophic cascades in Yellowstone: The first 15years after wolf reintroduction. Biological Conservation, 2012, 145, 205-213.	1.9	590
26	Berry-producing shrub characteristics following wolf reintroduction in Yellowstone National Park. Forest Ecology and Management, 2012, 276, 132-138.	1.4	17
27	The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology, 2012, 157-158, 88-98.	1.1	72
28	Large predators limit herbivore densities in northern forest ecosystems. European Journal of Wildlife Research, 2012, 58, 733-742.	0.7	107
29	The forgotten stage of forest succession: earlyâ€successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 2011, 9, 117-125.	1.9	733
30	Can restoring wolves aid in lynx recovery?. Wildlife Society Bulletin, 2011, 35, 514-518.	1.6	21
31	Recovering Riparian Plant Communities with Wolves in Northern Yellowstone, U.S.A Restoration Ecology, 2010, 18, 380-389.	1.4	49
32	Mexican wolves, elk, and aspen in Arizona: Is there a trophic cascade?. Forest Ecology and Management, 2010, 260, 915-922.	1.4	19
33	Wolves, Elk, Bison, and Secondary Trophic Cascades in Yellowstone National Park. Open Ecology Journal, 2010, 3, 31-37.	2.0	23
34	Research in Thermal Biology: Burning Questions for Coldwater Stream Fishes. Reviews in Fisheries Science, 2009, 17, 90-115.	2.1	187
35	Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation, 2009, 142, 2401-2414.	1.9	322
36	Wolves, trophic cascades, and rivers in the Olympic National Park, USA. Ecohydrology, 2008, 1, 118-130.	1.1	44

ROBERT L BESCHTA

#	Article	IF	CITATIONS
37	Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biological Conservation, 2008, 141, 1249-1256.	1.9	72
38	Recoupling fire and aspen recruitment after wolf reintroduction in Yellowstone National Park, USA. Forest Ecology and Management, 2008, 256, 1004-1008.	1.4	24
39	Recent History (1988–2004) of Beaver Dams along Bridge Creek in Central Oregon. Northwest Science, 2008, 82, 309-318.	0.1	31
40	INCREASED WILLOW HEIGHTS ALONG NORTHERN YELLOWSTONE's BLACKTAIL DEER CREEK FOLLOWING WOLF REINTRODUCTION. Western North American Naturalist, 2007, 67, 613-617.	0.2	27
41	Hardwood tree decline following large carnivore loss on the Great Plains, USA. Frontiers in Ecology and the Environment, 2007, 5, 241-246.	1.9	46
42	Restoring Yellowstone's aspen with wolves. Biological Conservation, 2007, 138, 514-519.	1.9	240
43	Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystem. Forest Ecology and Management, 2006, 230, 96-106.	1.4	119
44	Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation, 2006, 133, 397-408.	1.9	171
45	River channel dynamics following extirpation of wolves in northwestern Yellowstone National Park, USA. Earth Surface Processes and Landforms, 2006, 31, 1525-1539.	1.2	68
46	REDUCED COTTONWOOD RECRUITMENT FOLLOWING EXTIRPATION OF WOLVES IN YELLOWSTONE'S NORTHERN RANGE. Ecology, 2005, 86, 391-403.	1.5	81
47	Linking Wolves and Plants: Aldo Leopold on Trophic Cascades. BioScience, 2005, 55, 613.	2.2	44
48	The Effects of Postfire Salvage Logging on Aquatic Ecosystems in the American West. BioScience, 2004, 54, 1029.	2.2	67
49	Postfire Management on Forested Public Lands of the Western United States. Conservation Biology, 2004, 18, 957-967.	2.4	197
50	Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?. BioScience, 2004, 54, 755.	2.2	553
51	Wolves, elk, willows, and trophic cascades in the upper Gallatin Range of Southwestern Montana, USA. Forest Ecology and Management, 2004, 200, 161-181.	1.4	104
52	Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecology and Management, 2003, 184, 299-313.	1.4	257
53	COTTONWOODS, ELK, AND WOLVES IN THE LAMAR VALLEY OF YELLOWSTONE NATIONAL PARK. , 2003, 13, 1295-1309.		101
54	RELATIONSHIPS BETWEEN FLOOD FREQUENCIES AND RIPARIAN PLANT COMMUNITIES IN THE UPPER KLAMATH BASIN, OREGON. Journal of the American Water Resources Association, 2002, 38, 603-617.	1.0	27

ROBERT L BESCHTA

#	Article	IF	CITATIONS
55	Restoration and management of riparian ecosystems: a catchment perspective. Freshwater Biology, 1998, 40, 571-585.	1.2	86
56	An Ecological Perspective of Riparian and Stream Restoration in the Western United States. Fisheries, 1997, 22, 12-24.	0.6	307
57	Coarse woody debris and channel morphology interactions for undisturbed streams in southeast Alaska, U.S.A Earth Surface Processes and Landforms, 1990, 15, 149-156.	1.2	129
58	ESTIMATING STREAM CROSS-SECTIONAL AREA FROM WETTED WIDTH AND THALWEG DEPTH. Physical Geography, 1989, 10, 190-198.	0.6	11
59	FLOW CAPACITY OF CULVERTS ON OREGON COAST RANGE FOREST ROADS. Journal of the American Water Resources Association, 1988, 24, 631-637.	1.0	5
60	MORPHOLOGICAL FEATURES OF SMALL STREAMS: SIGNIFICANCE AND FUNCTION. Journal of the American Water Resources Association, 1986, 22, 369-379.	1.0	154
61	INFLUENCES OF INCREASED SAND DELIVERY ON THE MORPHOLOGY OF SAND AND GRAVEL CHANNELS. Journal of the American Water Resources Association, 1984, 20, 527-533.	1.0	60
62	SEDIMENT TRANSPORT DURING A CONTROLLED RESERVOIR RELEASE. Journal of the American Water Resources Association, 1981, 17, 635-641.	1.0	21
63	BEDLOAD TRANSPORT IN AN OREGON COAST RANGE STREAM. Journal of the American Water Resources Association, 1981, 17, 886-894.	1.0	22
64	MODIFYING AUTOMATED PUMPING SAMPLERS FOR USE IN SMALL MOUNTAIN STREAMS. Journal of the American Water Resources Association, 1980, 16, 137-138.	1.0	8
65	THE SUSPENDED SEDIMENT REGIME OF AN OREGON COAST RANGE STREAM. Journal of the American Water Resources Association, 1979, 15, 144-154.	1.0	50
66	The Intrusion of Fine Sediments into a Stable Gravel Bed. Journal of the Fisheries Research Board of Canada, 1979, 36, 204-210.	1.0	242
67	Conserving the World's Megafauna and Biodiversity: The Fierce Urgency of Now. BioScience, 0, , biw168.	2.2	14