Marina Badia-Fabregat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1504210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decreasing environmental impact of landfill leachate treatment by MBR, RO and EDR hybrid treatment. Environmental Technology (United Kingdom), 2021, 42, 3508-3522.	2.2	18
2	Anaerobic Membrane Bioreactor (AnMBR) for the Treatment of Cheese Whey for the Potential Recovery of Water and Energy. Waste and Biomass Valorization, 2020, 11, 1821-1835.	3.4	16
3	Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 567695.	4.1	17
4	Coagulation-flocculation and moving bed biofilm reactor as pre-treatment for water recycling in the petrochemical industry. Science of the Total Environment, 2020, 715, 136800.	8.0	29
5	Synthesis and synthetic mechanism of Polylactic acid. Physical Sciences Reviews, 2020, .	0.8	7
6	Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 17204-17213.	7.1	42
7	Glutamate as sole carbon source for enhanced biological phosphorus removal. Science of the Total Environment, 2019, 657, 1398-1408.	8.0	46
8	Overview on Pilot-Scale Treatments and New and Innovative Technologies for Hospital Effluent. Handbook of Environmental Chemistry, 2017, , 209-230.	0.4	10
9	Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate: Identification and monitoring of transformation products of benzotriazoles. Chemosphere, 2017, 184, 1054-1070.	8.2	20
10	Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. International Biodeterioration and Biodegradation, 2017, 122, 141-150.	3.9	64
11	Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Science of the Total Environment, 2017, 579, 366-377.	8.0	56
12	Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Applied Microbiology and Biotechnology, 2016, 100, 2401-2415.	3.6	46
13	Suspect screening of emerging pollutants and their major transformation products in wastewaters treated with fungi by liquid chromatography coupled to a high resolution mass spectrometry. Journal of Chromatography A, 2016, 1439, 124-136.	3.7	32
14	Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environmental Sciences: Processes and Impacts, 2015, 17, 429-440.	3.5	28
15	ldentification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. Journal of Hazardous Materials, 2015, 283, 663-671.	12.4	85
16	Use of stable isotope probing to assess the fate of emerging contaminants degraded by white-rot fungus. Chemosphere, 2014, 103, 336-342.	8.2	27
17	Evaluation of fungal- and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1. Science of the Total Environment, 2012, 427-428, 355-363.	8.0	105
18	Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus Trametes versicolor, Journal of Environmental Management, 2012, 104, 114-120	7.8	55

#	Article	IF	CITATIONS
19	Comparison of human RNase 3 and RNase 7 bactericidal action at the Gramâ€negative and Gramâ€positive bacterial cell wall. FEBS Journal, 2010, 277, 1713-1725.	4.7	95