
Francesca Baldelli Bombelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite Peptide–Agarose Hydrogels for Robust and High-Sensitivity 3D Immunoassays. ACS Applied Materials & Interfaces, 2022, 14, 4811-4822.	8.0	8
2	High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster. Nature Communications, 2022, 13, 2607.	12.8	10
3	Emergence of Elastic Properties in a Minimalist Resilinâ€Derived Heptapeptide upon Bromination. Small, 2022, 18, .	10.0	5
4	Confined space design by nanoparticle self-assembly. Chemical Science, 2021, 12, 1632-1646.	7.4	12
5	A Bioorthogonal Probe for Multiscale Imaging by ¹⁹ F-MRI and Raman Microscopy: From Whole Body to Single Cells. Journal of the American Chemical Society, 2021, 143, 12253-12260.	13.7	29
6	Nanoparticles for "two color―19F magnetic resonance imaging: Towards combined imaging of biodistribution and degradation. Journal of Colloid and Interface Science, 2020, 565, 278-287.	9.4	22
7	Design of fluorinated hyperbranched polyether copolymers for ¹⁹ F MRI nanotheranostics. Polymer Chemistry, 2020, 11, 3951-3963.	3.9	22
8	Fluorinated PLGA Nanoparticles for Enhanced Drug Encapsulation and ¹⁹ Fâ€NMR Detection. Chemistry - A European Journal, 2020, 26, 10057-10063.	3.3	14
9	Halogenation of the N â€Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloidâ€Î² Sequence 7–12. ChemistryOpen, 2020, 9, 253-260.	1.9	6
10	Enhanced self-assembly of the 7–12 sequence of amyloid-β peptide by tyrosine bromination. Supramolecular Chemistry, 2020, 32, 247-255.	1.2	8
11	Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. Nanoscale, 2019, 11, 2306-2316.	5.6	18
12	Nanoparticle–Membrane Interactions: The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers (Small 23/2019). Small, 2019, 15, 1970124.	10.0	8
13	BODIPY Dyes Bearing Multibranched Fluorinated Chains: Synthesis, Structural, and Spectroscopic Studies. Chemistry - A European Journal, 2019, 25, 9078-9087.	3.3	16
14	The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. Small, 2019, 15, e1805046.	10.0	35
15	Oral delivery of nanoparticles - let's not forget about the protein corona. Expert Opinion on Drug Delivery, 2019, 16, 563-566.	5.0	43
16	Multispectral MRI with Dual Fluorinated Probes to Track Mononuclear Cell Activity in Mice. Radiology, 2019, 291, 351-357.	7.3	36
17	Multicore Liquid Perfluorocarbonâ€Loaded Multimodal Nanoparticles for Stable Ultrasound and ¹⁹ F MRI Applied to In Vivo Cell Tracking. Advanced Functional Materials, 2019, 29, 1806485.	14.9	47
18	Halogen bond-assisted self-assembly of gold nanoparticles in solution and on a planar surface. Nanoscale, 2019, 11, 18407-18415.	5.6	11

#	Article	IF	CITATIONS
19	<i>In Situ</i> Generation of Chiroptically-Active Gold-Peptide Superstructures Promoted by Iodination. ACS Nano, 2019, 13, 2158-2166.	14.6	25
20	The polyplex, protein corona, cell interplay: Tips and drawbacks. Colloids and Surfaces B: Biointerfaces, 2018, 168, 60-67.	5.0	9
21	Chemical characterization of fluorinated/hydrogenated mixed monolayers grafted on gold nanoparticles. Journal of Fluorine Chemistry, 2018, 206, 99-107.	1.7	5
22	Stability of plant virus-based nanocarriers in gastrointestinal fluids. Nanoscale, 2018, 10, 1667-1679.	5.6	40
23	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	5.6	33
24	The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. Journal of Colloid and Interface Science, 2017, 504, 741-750.	9.4	44
25	Crystallographic insights into the structural aspects of thioctic acid based halogen-bond donor for the functionalization of gold nanoparticles. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 240-246.	1.1	5
26	Superfluorinated and NIR-luminescent gold nanoclusters. Chemical Communications, 2017, 53, 621-624.	4.1	20
27	Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 73, 20.13.1-20.13.33.	1.1	3
28	Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS Nano, 2017, 11, 9413-9423.	14.6	44
29	Titelbild: Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16309-16309.	2.0	1
30	Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles. Angewandte Chemie - International Edition, 2017, 56, 16186-16190.	13.8	27
31	Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Waterâ€Dispersible Fluorous Supraparticles. Angewandte Chemie, 2017, 129, 16404-16408.	2.0	2
32	An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine, 2016, 11, 643-656.	3.3	21
33	Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. International Journal of Biochemistry and Cell Biology, 2016, 75, 212-222.	2.8	60
34	Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. ACS Nano, 2016, 10, 3723-3737.	14.6	130
35	Magnetic field responsive drug release from magnetoliposomes in biological fluids. Journal of Materials Chemistry B, 2016, 4, 716-725.	5.8	37
36	Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 2015, 177, 62-69.	1.7	22

Francesca Baldelli Bombelli

#	Article	IF	CITATIONS
37	Technical tip: high-resolution isolation of nanoparticle–protein corona complexes from physiological fluids. Nanoscale, 2015, 7, 11980-11990.	5.6	32
38	Nanomedicine delivery: does protein corona route to the target or off road?. Nanomedicine, 2015, 10, 3231-3247.	3.3	86
39	Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. Nanoscale, 2015, 7, 15268-15276.	5.6	52
40	¹⁹ F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chemical Reviews, 2015, 115, 1106-1129.	47.7	401
41	The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncology, The, 2014, 15, e22-e32.	10.7	75
42	Diastereoselective self-assembly of clofarabine lipids. New Journal of Chemistry, 2014, 38, 5247-5253.	2.8	3
43	A Superfluorinated Molecular Probe for Highly Sensitive <i>in Vivo</i> ¹⁹ F-MRI. Journal of the American Chemical Society, 2014, 136, 8524-8527.	13.7	113
44	Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, 8, 137-143.	31.5	1,516
45	Nanoscopic Agents in a Physiological Environment: The Importance of Understanding Their Characteristics. Topics in Medicinal Chemistry, 2013, , 29-54.	0.8	3
46	COMPARISONS OF NANOPARTICLE PROTEIN CORONA COMPLEXES ISOLATED WITH DIFFERENT METHODS. Nano LIFE, 2013, 03, 1343004.	0.9	16
47	Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo. Langmuir, 2012, 28, 14983-14991.	3.5	136
48	Reversible <i>versus</i> Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano, 2012, 6, 2532-2541.	14.6	431
49	Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. PLoS ONE, 2012, 7, e40685.	2.5	80
50	Designing the nanoparticle–biomolecule interface for "targeting and therapeutic delivery― Journal of Controlled Release, 2012, 161, 164-174.	9.9	344
51	Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter, 2011, 7, 1025-1037.	2.7	78
52	Proteinâ^'Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 2011, 111, 5610-5637.	47.7	1,242
53	Physicalâ^'Chemical Aspects of Protein Corona: Relevance to <i>in Vitro</i> and <i>in Vivo</i> Biological Impacts of Nanoparticles. Journal of the American Chemical Society, 2011, 133, 2525-2534.	13.7	1,577
54	Nanoparticle coronas take shape. Nature Nanotechnology, 2011, 6, 11-12.	31.5	183

#	Article	lF	CITATIONS
55	Nanobiotechnology: Nanoparticle coronas take shape. Nature Nanotechnology, 2011, 6, 11-12.	31.5	55
56	What the Cell "Sees―in Bionanoscience. Journal of the American Chemical Society, 2010, 132, 5761-5768.	13.7	1,075
57	Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter, 2010, 6, 154-162.	2.7	95
58	Soft Hybrid Nanostructures Composed of Phospholipid Liposomes Decorated with Oligonucleotides. Methods in Enzymology, 2009, 464, 249-277.	1.0	3
59	Closed nanoconstructs assembled by step-by-step ss-DNA coupling assisted by phospholipid membranes. Soft Matter, 2009, 5, 1639.	2.7	29
60	DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2008, 112, 15283-15294.	2.6	23
61	Enhanced DNA strand exchange on positively charged liposomes. Soft Matter, 2008, 4, 2500.	2.7	5
62	Collective headgroup conformational transition in twisted micellar superstructures. Soft Matter, 2008, 4, 1102.	2.7	13
63	Phospholipid Membranes Decorated by Cholesterol-Based Oligonucleotides as Soft Hybrid Nanostructures. Journal of Physical Chemistry B, 2008, 112, 10942-10952.	2.6	56
64	DNA Strand Exchange on Liposome Surfaces. Nucleic Acids Symposium Series, 2008, 52, 465-465.	0.3	2
65	Structural characterization of Di-C ₁₂ P-uridine worm-like micelles: ionic strength dependence. Journal of Physics Condensed Matter, 2008, 20, 104213.	1.8	1
66	Nucleolipid membranes: structure and molecular recognition. Journal of Physics Condensed Matter, 2008, 20, 104212.	1.8	3
67	Amphiphilic Self-Assemblies Decorated by Nucleobases. Journal of Physical Chemistry B, 2007, 111, 11734-11744.	2.6	28
68	Nucleolipoplexes:  A New Paradigm for Phospholipid Bilayerâ^'Nucleic Acid Interactions. Journal of the American Chemical Society, 2007, 129, 11664-11665.	13.7	49
69	Microstructure of ternary system di-lauroyl-phosphatidyl-adenosine/water/cyclohexane. Journal of Applied Crystallography, 2007, 40, s240-s244.	4.5	1
70	Structural Investigation of Bilayers Formed by 1-Palmitoyl-2-Oleoylphosphatidylnucleosides. Biophysical Journal, 2006, 90, 1260-1269.	0.5	18
71	Light Scattering and Cryo-Transmission Electron Microscopy Investigation of the Self-Assembling Behavior of Di-C12P-Nucleosides in Solution. Journal of Physical Chemistry B, 2006, 110, 17627-17637.	2.6	21
72	Flexibility of Dilauroyl-Phosphatidyl-Nucleoside Wormlike Micelles in Aqueous Solutions. Journal of Physical Chemistry B, 2004, 108, 16427-16434.	2.6	25

#	Article	IF	CITATIONS
73	Giant Polymerlike Micelles Formed by Nucleoside-Functionalized Lipids. Journal of Physical Chemistry B, 2002, 106, 11613-11621.	2.6	31
74	Living polynucleotides formed by the spontaneous aggregation of dilauroylphosphonucleosides. Applied Physics A: Materials Science and Processing, 2002, 74, s1270-s1273.	2.3	9
75	Janus-Type Dendrimers Based on Highly Branched Fluorinated Chains with Tunable Self-Assembly and ¹⁹ F Nuclear Magnetic Resonance Properties. Macromolecules, 0, , .	4.8	13
76	Hydrophobinâ€Coated Solid Fluorinated Nanoparticles for ¹⁹ Fâ€MRI. Advanced Materials Interfaces, 0, , 2101677.	3.7	3