
Hajime Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503723/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Analysis of a Methanogen and an Actinobacterium Dominating the Thermophilic Microbial Community of an Electromethanogenic Biocathode. Archaea, 2021, 2021, 1-13.	2.3	4
2	Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis. Journal of CO2 Utilization, 2020, 35, 169-175.	6.8	54
3	GO/PEDOT modified biocathodes promoting CO ₂ reduction to CH ₄ in microbial electrosynthesis. Sustainable Energy and Fuels, 2020, 4, 2987-2997.	4.9	37
4	Polarity reversal facilitates the development of biocathodes in microbial electrosynthesis systems for biogas production. International Journal of Hydrogen Energy, 2019, 44, 26226-26236.	7.1	30
5	Biofuel Production from Bioelectrochemical Systems. Green Energy and Technology, 2018, , 435-461.	0.6	1
6	Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%. Nano Energy, 2018, 53, 232-239.	16.0	76
7	High-pressure thermophilic electromethanogenic system producing methane at 5ÂMPa, 55°C. Journal of Bioscience and Bioengineering, 2017, 124, 327-332.	2.2	20
8	Draft Genome Sequence of Methanothermobacter sp. Strain EMTCatA1, Reconstructed from the Metagenome of a Thermophilic Electromethanogenesis-Catalyzing Biocathode. Genome Announcements, 2017, 5, .	0.8	5
9	Experimental and Mathematical Analyses of Bio-electrochemical Conversion of Carbon Dioxide to Methane. Energy Procedia, 2017, 114, 7133-7140.	1.8	13
10	Draft Genome Sequence of a Novel Coriobacteriaceae sp. Strain, EMTCatB1, Reconstructed from the Metagenome of a Thermophilic Electromethanogenic Biocathode. Genome Announcements, 2017, 5, .	0.8	9
11	Voltage reversal causes bioanode corrosion in microbial fuel cell stacks. International Journal of Hydrogen Energy, 2017, 42, 27649-27656.	7.1	30
12	Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80A°C. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1200-1206.	1.3	31
13	Bioelectrochemical Analyses of the Development of a Thermophilic Biocathode Catalyzing Electromethanogenesis. Environmental Science & Technology, 2015, 49, 1225-1232.	10.0	150
14	Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. Journal of Bioscience and Bioengineering, 2013, 116, 114-117.	2.2	43
15	Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Conversion and Management, 2013, 66, 343-350.	9.2	59
16	A Thermophilic Gram-Negative Nitrate-Reducing Bacterium, <i>Calditerrivibrio nitroreducens</i> , Exhibiting Electricity Generation Capability. Environmental Science & Technology, 2013, 47, 12583-12590.	10.0	57
17	Electrochemical and phylogenetic analyses of current-generating microorganisms in a thermophilic microbial fuel cell. Journal of Bioscience and Bioengineering, 2013, 115, 268-271.	2.2	21
18	Identification of New Microbial Mediators for Electromethanogenic Reduction of Geologically-stored Carbon Dioxide. Energy Procedia, 2013, 37, 7006-7013.	1.8	8

Најіме Ковачазні

#	Article	IF	CITATIONS
19	Mechanism of Electromethanogenic Reduction of CO2 by a Thermophilic Methanogen. Energy Procedia, 2013, 37, 7021-7028.	1.8	35
20	Electromethanogenic CO2 Conversion by Subsurface-reservoir Microorganisms. Energy Procedia, 2013, 37, 7014-7020.	1.8	19
21	Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 15638-15645.	7.1	50
22	Analysis of methane production by microorganisms indigenous to a depleted oil reservoir for application in Microbial Enhanced Oil Recovery. Journal of Bioscience and Bioengineering, 2012, 113, 84-87.	2.2	35
23	Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. Journal of Bioscience and Bioengineering, 2012, 113, 204-210.	2.2	69
24	Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil–water biphasic reaction mixtures. Journal of Bioscience and Bioengineering, 2012, 113, 360-366.	2.2	22
25	Role of BacA in Lipopolysaccharide Synthesis, Peptide Transport, and Nodulation by Rhizobium sp. Strain NGR234. Journal of Bacteriology, 2011, 193, 2218-2228.	2.2	31
26	Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs. Journal of Bioscience and Bioengineering, 2010, 110, 106-108.	2.2	12
27	BacA, an ABC Transporter Involved in Maintenance of Chronic Murine Infections with <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2009, 191, 477-485.	2.2	76
28	Essential Role for the BacA Protein in the Uptake of a Truncated Eukaryotic Peptide in <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2009, 191, 1519-1527.	2.2	71
29	Rhizobia utilize pathogenâ€like effector proteins during symbiosis. Molecular Microbiology, 2009, 71, 92-106.	2.5	123
30	<i>Sinorhizobium meliloti</i> CpdR1 is critical for coâ€ordinating cell cycle progression and the symbiotic chronic infection. Molecular Microbiology, 2009, 73, 586-600.	2.5	45
31	Comparison of Responses to Double-Strand Breaks between <i>Escherichia coli</i> and <i>Bacillus subtilis</i> Reveals Different Requirements for SOS Induction. Journal of Bacteriology, 2009, 191, 1152-1161.	2.2	65
32	Development of Microbial Conversion Process of Residual Oil to Methane in Depleted Oil Fields. , 2009, , .		5
33	Multiple Ku orthologues mediate DNA nonâ€homologous endâ€joining in the freeâ€living form and during chronic infection of <i>Sinorhizobium meliloti</i> . Molecular Microbiology, 2008, 67, 350-363.	2.5	23
34	Ttsl regulates symbiotic genes in <i>Rhizobium</i> species NGR234 by binding to <i>tts</i> boxes. Molecular Microbiology, 2008, 68, 736-748.	2.5	77
35	Molecular Determinants of a Symbiotic Chronic Infection. Annual Review of Genetics, 2008, 42, 413-441.	7.6	326
36	How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nature Reviews Microbiology, 2007, 5, 619-633.	28.6	781

Најіме Ковачаѕні

#	Article	IF	CITATIONS
37	Flavonoid-Inducible Modifications to Rhamnan O Antigens Are Necessary for Rhizobium sp. Strain NGR234-Legume Symbioses. Journal of Bacteriology, 2006, 188, 3654-3663.	2.2	51
38	NopP, a phosphorylated effector ofRhizobiumsp. strain NGR234, is a major determinant of nodulation of the tropical legumesFlemingia congestaandTephrosia vogelii. Molecular Microbiology, 2005, 57, 1304-1317.	2.5	147
39	NopB, a Type III Secreted Protein of Rhizobium sp. Strain NGR234, Is Associated with Pilus-Like Surface Appendages. Journal of Bacteriology, 2005, 187, 1173-1181.	2.2	58
40	Characterization of NopP, a Type III Secreted Effector of Rhizobium sp. Strain NGR234. Journal of Bacteriology, 2004, 186, 4774-4780.	2.2	89
41	Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Molecular Microbiology, 2004, 51, 335-347.	2.5	124
42	Flavonoids, NodD1, NodD2, and Nod-Box NB15 Modulate Expression of the y4wEFG Locus That Is Required for Indole-3-Acetic Acid Synthesis in Rhizobium sp. strain NGR234. Molecular Plant-Microbe Interactions, 2004, 17, 1153-1161.	2.6	111
43	Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. Indian Journal of Experimental Biology, 2003, 41, 1101-13.	0.0	10
44	Molecular Characterization of Lactobacillus plantarum Genes for β-Ketoacyl-Acyl Carrier Protein Synthase III (fabH) and Acetyl Coenzyme A Carboxylase (accBCDA), Which Are Essential for Fatty Acid Biosynthesis. Applied and Environmental Microbiology, 2001, 67, 426-433.	3.1	24
45	DNA Synthesis and Fragmentation in Bacteroids during Astragalus sinicus Root Nodule Development. Bioscience, Biotechnology and Biochemistry, 2001, 65, 510-515.	1.3	14
46	Development of a host-vector system for Lactobacillus plantarum L137 isolated from a traditional fermented food produced in the Philippines. Journal of Bioscience and Bioengineering, 2000, 89, 62-67.	2.2	21
47	Experimental Head Injury with Lateral Impact Using Monkeys (Preliminary Report). Neurologia Medico-Chirurgica, 1982, 22, 491-498.	2.2	5
48	Experimental Head Injury in Monkeys. Neurologia Medico-Chirurgica, 1981, 21, 645-656.	2.2	15