Achim Schlapbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological inhibition of IKKÎ ² dampens NLRP3 inflammasome activation after priming in the human myeloid cell line THP-1. Biochemical and Biophysical Research Communications, 2021, 545, 177-182.	2.1	9
2	Optimization of the <i>In Vivo</i> Potency of Pyrazolopyrimidine MALT1 Protease Inhibitors by Reducing Metabolism and Increasing Potency in Whole Blood. Journal of Medicinal Chemistry, 2020, 63, 14594-14608.	6.4	17
3	Discovery of Potent, Highly Selective, and <i>In Vivo</i> Efficacious, Allosteric MALT1 Inhibitors by Iterative Scaffold Morphing. Journal of Medicinal Chemistry, 2020, 63, 14576-14593.	6.4	17
4	Discovery and Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with a Salt Bridge for the Improvement of Oral Exposure. Journal of Medicinal Chemistry, 2020, 63, 9856-9875.	6.4	15
5	Pharmacological Inhibition of MALT1 Protease Leads to a Progressive IPEX-Like Pathology. Frontiers in Immunology, 2020, 11, 745.	4.8	28
6	Stabilizing Inactive Conformations of MALT1 as an Effective Approach to Inhibit Its Protease Activity. Advanced Therapeutics, 2020, 3, 2000078.	3.2	2
7	Requirement of Mucosaâ€Associated Lymphoid Tissue Lymphoma Translocation Protein 1 Protease Activity for Fcγ Receptor–Induced Arthritis, but Not Fcγ Receptor–Mediated Platelet Elimination, in Mice. Arthritis and Rheumatology, 2020, 72, 919-930.	5.6	6
8	An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nature Chemical Biology, 2019, 15, 304-313.	8.0	50
9	Structural States of Hdm2 and HdmX: Xâ€ray Elucidation of Adaptations and Binding Interactions for Different Chemical Compound Classes. ChemMedChem, 2019, 14, 1305-1314.	3.2	17
10	Modulating ADME Properties by Fluorination: MK2 Inhibitors with Improved Oral Exposure. ACS Medicinal Chemistry Letters, 2018, 9, 392-396.	2.8	14
11	The Tâ€cell fingerprint of <scp>MALT</scp> 1 paracaspase revealed by selective inhibition. Immunology and Cell Biology, 2018, 96, 81-99.	2.3	53
12	N-aryl-piperidine-4-carboxamides as a novel class of potent inhibitors of MALT1 proteolytic activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2153-2158.	2.2	19
13	In vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3404-3408.	2.2	19
14	Discovery of a novel class of highly potent inhibitors of the p53–MDM2 interaction by structure-based design starting from a conformational argument. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4837-4841.	2.2	59
15	Novel 3-aminopyrazole inhibitors of MK-2 discovered by scaffold hopping strategy. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1293-1297.	2.2	38
16	In vivo and in vitro SAR of tetracyclic MAPKAP-K2 (MK2) inhibitors. Part II. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4719-4723.	2.2	30
17	In vivo and in vitro SAR of tetracyclic MAPKAP-K2 (MK2) inhibitors. Part I. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4715-4718.	2.2	17
18	Low-molecular-weight MK2 inhibitors: a tough nut to crack!. Future Medicinal Chemistry, 2009, 1, 1243-1257	2.3	31

ACHIM SCHLAPBACH

#	Article	IF	CITATIONS
19	Pyrrolo-pyrimidones: A novel class of MK2 inhibitors with potent cellular activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6142-6146.	2.2	43
20	Identification of Human Kinases Involved in Hepatitis C Virus Replication by Small Interference RNA Library Screening. Journal of Biological Chemistry, 2008, 283, 29-36.	3.4	95
21	The Role of Interstitial Macrophages in Nephropathy of Type 2 Diabetic db/db Mice. American Journal of Pathology, 2007, 170, 1267-1276.	3.8	87
22	Bridged Piperazines and Piperidines as CCR1 Antagonists with Oral Activity in Models of Arthritis and Multiple Sclerosis. Letters in Drug Design and Discovery, 2006, 3, 689-694.	0.7	8
23	Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 108-112.	2.2	136
24	Novel CCR1 antagonists with oral activity in the mouse collagen induced arthritis. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5160-5164.	2.2	32
25	A Novel Pd-Catalyzed Cyclization Reaction of Ureas for the Synthesis of Dihydroquinazolinone p38 Kinase Inhibitors ChemInform, 2004, 35, no.	0.0	0
26	A novel Pd-catalyzed cyclization reaction of ureas for the synthesis of dihydroquinazolinone p38 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 357-360.	2.2	23
27	A general palladium-catalysed synthesis of aromatic and heteroaromatic thioethers. Tetrahedron, 2001, 57, 3069-3073.	1.9	183
28	(E)-α-Sulfonamidocrotylboronates as Reagents for the Stereoselective Homoaldol Synthesis. European Journal of Organic Chemistry, 2001, 2001, 323-328.	2.4	32
29	Model Studies Towards a Novel Fragment Coupling for the Synthesis of Mycalamides and Related Natural Products. Helvetica Chimica Acta, 1996, 79, 346-352.	1.6	23
30	Studies Towards the Total Synthesis of the Marine-Derived Immunosuppressant Discodermolide: Stereoselective Synthesis of a C9-C24 Subunit. Synlett, 1995, 1995, 498-500.	1.8	70
31	Computer-assisted design of chiral boron enolates: The role of ate complexes in determining aldol stereoselectivity Tetrahedron, 1994, 50, 1227-1242.	1.9	17
32	Synthesis of the trioxadecalin-part of mycalamide B. Tetrahedron Letters, 1993, 34, 7903-7906.	1.4	33
33	Allylboration-reactions, the key to a short synthesis of benzoyl-pedamide. Tetrahedron, 1992, 48, 1959-1968.	1.9	107
34	Stereoselective synthesis of alcohols, XLI. Chirality transfer to generate quaternary stereogenic centers by an allylboration reaction. Liebigs Annalen Der Chemie, 1991, 1991, 1203-1206.	0.8	20
35	Stereoselective synthesis of alcohols, XXXVI. Stereoselective generation of homoallyl alcohols having quaternary stereogenic centers. Liebigs Annalen Der Chemie, 1990, 1990, 1243-1248.	0.8	22