
## JiÅÃ<sup>™</sup> Chvojka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503315/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | New polyamide 6 nanofibrous sorbents produced via alternating current electrospinning for the<br>on-line solid phase extraction of small molecules in chromatography systems. Microchemical Journal,<br>2022, 174, 107084.                                                    | 4.5 | 14        |
| 2  | The Potential for the Direct and Alternating Current-Driven Electrospinning of Polyamides.<br>Nanomaterials, 2022, 12, 665.                                                                                                                                                   | 4.1 | 4         |
| 3  | The effect of the electrospinning setup on the surface energy of polycaprolactone nanofibre layers.<br>Journal of Industrial Textiles, 2022, 51, 8517S-8527S.                                                                                                                 | 2.4 | 1         |
| 4  | Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. Materials and Design, 2022, 217, 110661.                                                                                                      | 7.0 | 25        |
| 5  | Nanofibrous Online Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters. Membranes, 2022, 12, 648.                                                                                                     | 3.0 | 5         |
| 6  | A PVDF electrospun antifibrotic composite for use as a glaucoma drainage implant. Materials Science and Engineering C, 2021, 119, 111637.                                                                                                                                     | 7.3 | 15        |
| 7  | Improved spinnability of PA 6 solutions using AC electrospinning. Materials Letters, 2021, 283, 128761.                                                                                                                                                                       | 2.6 | 11        |
| 8  | Reinforcement of Colonic Anastomosis with Improved Ultrafine Nanofibrous Patch: Experiment on Pig. Biomedicines, 2021, 9, 102.                                                                                                                                                | 3.2 | 7         |
| 9  | Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS Omega, 2021, 6, 9234-9242.                                                                                                        | 3.5 | 10        |
| 10 | Microplastic fibers influence Ag toxicity and bioaccumulation in Eisenia andrei but not in Enchytraeus crypticus. Ecotoxicology, 2021, 30, 1216-1226.                                                                                                                         | 2.4 | 16        |
| 11 | The Optimization of Alternating Current Electrospun PA 6 Solutions Using a Visual Analysis System.<br>Polymers, 2021, 13, 2098.                                                                                                                                               | 4.5 | 6         |
| 12 | The effect of material and process parameters on the surface energy of polycaprolactone fibre layers.<br>Materials and Design, 2021, 205, 109748.                                                                                                                             | 7.0 | 17        |
| 13 | Preparation of a Hydrogel Nanofiber Wound Dressing. Nanomaterials, 2021, 11, 2178.                                                                                                                                                                                            | 4.1 | 15        |
| 14 | The role of pKa, log P of analytes, and protein matrix in solid-phase extraction using native and coated nanofibrous and microfibrous polymers prepared via meltblowing and combined meltblowing/electrospinning technologies. Talanta, 2021, 232, 122470.                    | 5.5 | 4         |
| 15 | Comparison study of nanofibers, composite nano/microfiber materials, molecularly imprinted polymers, and core-shell sorbents used for on-line extraction-liquid chromatography of ochratoxins in Tokaj wines. Microchemical Journal, 2021, 170, 106680.                       | 4.5 | 8         |
| 16 | The modification of the wetting of polycaprolactone nanofibre layers via alternating current spinning. Materials and Design, 2021, 210, 110096.                                                                                                                               | 7.0 | 6         |
| 17 | Polycaprolactone Composite Micro/Nanofibrous Material as an Alternative to Restricted Access<br>Media for Direct Extraction and Separation of Non-Steroidal Anti-Inflammatory Drugs from Human<br>Serum Using Column-Switching Chromatography. Nanomaterials, 2021, 11, 2669. | 4.1 | 4         |
| 18 | The theoretical and experimental wetting of polycaprolactone nanofibre layers by gelatin hydrogel. ,                                                                                                                                                                          |     | 0         |

8 2021,,.

ЈіÅ™Ã-Сн∨ојка

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Novel nanofibrous sorbents for the extraction and determination of resveratrol in wine. Talanta, 2020, 206, 120181.                                                                                                              | 5.5 | 10        |
| 20 | Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Materials Letters, 2020, 263, 127281.                                                     | 2.6 | 23        |
| 21 | 3D-Printed Magnetic Stirring Cages for Semidispersive Extraction of Bisphenols from Water Using Polymer Micro- and Nanofibers. Analytical Chemistry, 2020, 92, 3964-3971.                                                        | 6.5 | 21        |
| 22 | Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in<br>Osteochondral Defects in Rabbits. Nanomaterials, 2020, 10, 1504.                                                                         | 4.1 | 9         |
| 23 | On-line polydopamine coating as a new way to functionalize polypropylene fiber sorbent for solid phase extraction. Talanta, 2020, 219, 121189.                                                                                   | 5.5 | 3         |
| 24 | Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone. ACS<br>Omega, 2020, 5, 8885-8892.                                                                                                | 3.5 | 36        |
| 25 | ac Bubble Electrospinning Technology for Preparation of Nanofibrous Mats. ACS Omega, 2020, 5,<br>8268-8271.                                                                                                                      | 3.5 | 12        |
| 26 | Poly-ε-caprolactone Nanofibrous Polymers: A Simple Alternative to Restricted Access Media for<br>Extraction of Small Molecules from Biological Matrixes. Analytical Chemistry, 2020, 92, 6801-6805.                              | 6.5 | 11        |
| 27 | Polycaprolactone nanofibers functionalized with aÂdopamine coating for on-line solid phase<br>extraction of bisphenols, betablockers, nonsteroidal drugs, and phenolic acids. Mikrochimica Acta,<br>2019, 186, 710.              | 5.0 | 20        |
| 28 | Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta, 2019, 197, 517-521.                                                                               | 5.5 | 11        |
| 29 | Production of gelatin nanofibrous layers via alternating current electrospinning. Materials Letters, 2019, 252, 186-190.                                                                                                         | 2.6 | 9         |
| 30 | Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput<br>AC needleless and collectorless electrospinning. Scientific Reports, 2019, 9, 1801.                                          | 3.3 | 36        |
| 31 | Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent. Talanta, 2018, 181, 326-332.                                     | 5.5 | 25        |
| 32 | Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system:<br>A comparison with monolithic reversed phase C18 sorbent. Analytica Chimica Acta, 2018, 1018, 26-34.                        | 5.4 | 24        |
| 33 | An on-line coupling of nanofibrous extraction with column-switching high performance liquid<br>chromatography – A case study on the determination of bisphenol A in environmental water samples.<br>Talanta, 2018, 178, 141-146. | 5.5 | 37        |
| 34 | Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration. Cell Adhesion and Migration, 2018, 12, 271-285.                                                             | 2.7 | 36        |
| 35 | A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as<br>sorbents for on-line solid phase extraction in chromatography system. Analytica Chimica Acta, 2018,<br>1023, 44-52.           | 5.4 | 42        |
| 36 | Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers.<br>International Journal of Pharmaceutics, 2017, 516, 293-300.                                                                    | 5.2 | 57        |

ЈіÅ™Ã-Сн∨ојка

| #  | Article                                                                                                                                                                                                  | IF              | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| 37 | The usage of nonwoven nanofibers for improving properties of electrical insulation. , 2016, , .                                                                                                          |                 | 2           |
| 38 | Partial discharges of nonwoven nanofibers composite. , 2016, , .                                                                                                                                         |                 | 3           |
| 39 | The combination of meltblown technology and electrospinning – The influence of the ratio of micro<br>and nanofibers on cell viability. Materials Letters, 2016, 173, 153-157.                            | 2.6             | 17          |
| 40 | A study on the usage of nonwoven nanofibers in electrical insulating materials. , 2015, , .                                                                                                              |                 | 6           |
| 41 | Using of statistical tools within optimalization of design of material for high-voltage applications. , 2015, , .                                                                                        |                 | 1           |
| 42 | The combination of meltblown and electrospinning for bone tissue engineering. Materials Letters, 2015, 143, 172-176.                                                                                     | 2.6             | 35          |
| 43 | Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry Chemical Physics, 2014, 16, 26816-26822.                                                               | 2.8             | 74          |
| 44 | Cell penetration to nanofibrous scaffolds. Cell Adhesion and Migration, 2014, 8, 36-41.                                                                                                                  | 2.7             | 32          |
| 45 | Estimation of fiber system orientation for nonwoven and nanofibrous layers: local approach based on image analysis. Textile Reseach Journal, 2014, 84, 989-1006.                                         | 2.2             | 18          |
| 46 | Elastic threeâ€dimensional poly (εâ€caprolactone) nanofibre scaffold enhances migration, proliferation<br>and osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 2013, 46, 23-37. | 5.3             | 73          |
| 47 | Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first) Tj ETQq1 1                                                                                       | 0.784314<br>2.0 | l rgBT /Ove |
| 48 | Needle penetration forces into textile prostheses and skin: experimental study. Journal of the Textile<br>Institute, 0, , 1-8.                                                                           | 1.9             | 1           |