
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Asphaltene Aggregates Using X-ray Diffraction and Small-Angle X-ray Scattering. Energy & Fuels, 2004, 18, 1118-1125.	5.1	193
2	DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Research, 2008, 18, 1969-1978.	5.5	161
3	Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149, 183-189.	3.9	144
4	Effect of supercritical water on upgrading reaction of oil sand bitumen. Journal of Supercritical Fluids, 2010, 55, 223-231.	3.2	137
5	Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry. Energy & Fuels, 2004, 18, 1405-1413.	5.1	98
6	Molecular Dynamics Simulation of the Heat-Induced Relaxation of Asphaltene Aggregates. Energy & Fuels, 2003, 17, 135-139.	5.1	94
7	Hydrocracking Brazilian Marlim vacuum residue with natural limonite. Part 1: catalytic activity of natural limonite. Fuel, 2005, 84, 411-416.	6.4	62
8	Molecular Weight Calibration of Asphaltenes Using Gel Permeation Chromatography/Mass Spectrometry. Energy & Fuels, 2005, 19, 1991-1994.	5.1	57
9	Energy-efficient ultra-deep desulfurization of kerosene based on selective photooxidation and adsorption. Fuel, 2009, 88, 1961-1969.	6.4	57
10	Recovery of Lighter Fuels by Cracking Heavy Oil with Zirconiaâ^'Aluminaâ^'Iron Oxide Catalysts in a Steam Atmosphere. Energy & Fuels, 2009, 23, 1338-1341.	5.1	49
11	Production of Light Oil by Oxidative Cracking of Oil Sand Bitumen Using Iron Oxide Catalysts in a Steam Atmosphere. Energy & Fuels, 2011, 25, 524-527.	5.1	43
12	Structural Relaxation Behaviors of Three Different Asphaltenes Using MD Calculations. Petroleum Science and Technology, 2004, 22, 901-914.	1.5	42
13	Upgrading of Bitumen in the Presence of Hydrogen and Carbon Dioxide in Supercritical Water. Energy & Fuels, 2013, 27, 646-653.	5.1	40
14	Effect of water properties on the degradative extraction of asphaltene using supercritical water. Journal of Supercritical Fluids, 2012, 68, 113-116.	3.2	35
15	Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium. Water Research, 2002, 36, 2813-2823.	11.3	34
16	Characterization of Asphaltenes from Brazilian Vacuum Residue Using Heptaneâ^'Toluene Mixtures. Energy & Fuels, 2004, 18, 1792-1797.	5.1	33
17	Molecular Dynamics Simulation of Structural Relaxation of Asphaltene Aggregates. Petroleum Science and Technology, 2003, 21, 491-505.	1.5	31
18	Genomeâ€wide DNA methylation profile of tissueâ€dependent and differentially methylated regions (Tâ€ÐMRs) residing in mouse pluripotent stem cells. Genes To Cells, 2010, 15, 607-618.	1.2	30

#	Article	IF	CITATIONS
19	Bitumen Cracking in Supercritical Water Upflow. Energy & Fuels, 2014, 28, 858-861.	5.1	30
20	Conditions of Supercritical Water for Good Miscibility with Heavy Oils. Journal of the Japan Petroleum Institute, 2010, 53, 61-62.	0.6	26
21	A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation, 2009, 20, 383-390.	3.0	25
22	Fractionation of Degraded Lignin by Using a Water/1â€Butanol Mixture with a Solidâ€Acid Catalyst: A Potential Source of Phenolic Compounds. ChemCatChem, 2017, 9, 2875-2880.	3.7	24
23	The Development of Support Program for the Analysis of Average Molecular Structures by Personal Computer Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1997, 40, 46-51.	0.1	24
24	Characterization of an Iron-Oxide-Based Catalyst Used for Catalytic Cracking of Heavy Oil with Steam. Energy & Fuels, 2018, 32, 2834-2839.	5.1	22
25	Comparison of Thermal Cracking Processes for Athabasca Oil Sand Bitumen: Relationship between Conversion and Yield. Energy & Fuels, 2014, 28, 6322-6325.	5.1	19
26	Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent. Industrial Crops and Products, 2021, 159, 113078.	5.2	19
27	Determination of Carbonyl Functional Groups in Heavy Oil Using Infrared Spectroscopy. Energy & Fuels, 2020, 34, 5231-5235.	5.1	18
28	Methanol-Mediated Extraction of Coal Liquid (5). Conceptual Design and Mass Balance of a Continuous Methanol-Mediated Extraction Process. Energy & Fuels, 2002, 16, 1337-1342.	5.1	17
29	Anaerobic degradation of p-xylene in sediment-free sulfate-reducing enrichment culture. Biodegradation, 2008, 19, 909-913.	3.0	17
30	Solvent Effect of Water on Supercritical Water Treatment of Heavy Oil. Journal of the Japan Petroleum Institute, 2014, 57, 11-17.	0.6	16
31	Mapping the Degree of Asphaltene Aggregation, Determined Using Rayleigh Scattering Measurements and Hansen Solubility Parameters. Energy & Fuels, 2015, 29, 2808-2812.	5.1	13
32	Extraction of Phenol in Water Phase Using Liquefied Dimethyl Ether. Journal of the Japan Petroleum Institute, 2003, 46, 375-378.	0.6	12
33	Kinetic Model for Catalytic Cracking of Heavy Oil with a Zirconiaâ	5.1	12
34	Catalytic Cracking of Heavy Oil with Iron Oxide-based Catalysts Using Hydrogen and Oxygen Species from Steam. Journal of the Japan Petroleum Institute, 2015, 58, 329-335.	0.6	12
35	Organosolv Treatment Using 1-Butanol and Degradation of Extracted Lignin Fractions into Phenolic Compounds over Iron Oxide Catalyst. Journal of the Japan Petroleum Institute, 2019, 62, 37-44.	0.6	12
36	Catalytic cracking of lignin model compounds and degraded lignin dissolved in inert solvent over mixed catalyst of iron oxide and MFI zeolite for phenol recovery. Fuel Processing Technology, 2020, 197, 106190.	7.2	10

#	Article	IF	CITATIONS
37	Adsorptive Separation of Infinitesimal Sulfur Oxide in Naphtha—Screening of Adsorbents—. Journal of the Japan Petroleum Institute, 2006, 49, 210-213.	0.6	9
38	Effect ofn-Pentane andn-Heptane Insolubles on the Pyrolysis of Vacuum Residue. Energy & Fuels, 2006, 20, 2475-2477.	5.1	8
39	Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Naphtha with Hydrogen Peroxide in Naphtha/Acetic Acid Biphasic System. Journal of the Japan Petroleum Institute, 2007, 50, 329-334.	0.6	8
40	DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells. BMC Immunology, 2012, 13, 58.	2.2	8
41	Effect of Supercritical Water on Desulfurization Behavior of Oil Sand Bitumen. Journal of the Japan Petroleum Institute, 2012, 55, 261-266.	0.6	8
42	Enrichment of short interspersed transposable elements to embryonic stem cellâ€specific hypomethylated gene regions. Genes To Cells, 2010, 15, 855-865.	1.2	7
43	Oxidative Desulfurization of Naphtha with Hydrogen Peroxide in Presence of Acid Catalyst in Naphtha/Acetic Acid Biphasic System. Journal of the Japan Petroleum Institute, 2010, 53, 251-255.	0.6	7
44	Desulfurization of Heavy Oil with Iron Oxide-based Catalysts Using Steam. Journal of the Japan Petroleum Institute, 2015, 58, 336-340.	0.6	7
45	Observation of Stepwise Association of Petroleum-derived Asphaltene and Maltene Components by Surface Tension Measurements. Journal of the Japan Petroleum Institute, 2004, 47, 32-36.	0.6	5
46	Estimation of Carbon Aromaticity for Asphaltenes through Elemental Analysis and Proton NMR: Carbon Aromaticity of Pentane-insoluble and Heptane-soluble Fraction. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 274-276.	0.2	5
47	Supra-Molecular Asphaltene Relaxation Technology. Journal of the Japan Petroleum Institute, 2013, 56, 61-68.	0.6	4
48	Separation of Asphaltene by Dimethyl Ether. Journal of the Japan Petroleum Institute, 2010, 53, 256-259.	0.6	3
49	Effect of 1-Methylnaphthalene Solvent on Cracking of Oil Sand Bitumen with Iron Oxide Catalyst in Steam Atmosphere. Journal of the Japan Petroleum Institute, 2010, 53, 260-261.	0.6	2
50	Dependence of the Molecular Structural Parameters of Asphaltene on the Molecular Weight. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 142-150.	0.2	2
51	Modification of Type Analysis for Heavy Oil by Downsizing of JPI Standard (JPI-5S-22-83). Journal of the Japan Petroleum Institute, 2016, 59, 307-310.	0.6	2
52	Screening Method for Oil Shale Samples for Fischer Assay. Journal of the Japan Petroleum Institute, 2003, 46, 210-213.	0.6	1
53	Coking Reactivities of Petroleum Asphaltenes on Thermal Cracking. ACS Symposium Series, 2005, , 171-181.	0.5	1

54 Iron Oxide-Based Catalyst for Catalytic Cracking of Heavy Oil. , 2018, , .

1

#	Article	IF	CITATIONS
55	Adsorptive Separation of Infinitesimal Sulfur Oxide in Naphtha —Reactivation of Silica Gel Using Toluene and Dimethyl Ether—. Journal of the Japan Petroleum Institute, 2009, 52, 21-26.	0.6	1
56	Determination of Monoaromatic Fraction in Saturate Fraction Separated by JPI Standard (JPI-5S-22-83) and Modified JPI Method. Journal of the Japan Petroleum Institute, 2016, 59, 311-316.	0.6	1
57	Estimation of the Structural Parameter Distribution of Asphaltene Using a Preparative GPC Technique. ACS Symposium Series, 2005, , 65-74.	0.5	Ο
58	Separation of Asphaltene Using Columns Packed with Teflon Beads. Journal of the Japan Petroleum Institute, 2012, 55, 142-147.	0.6	0
59	Molecular Weight Measuring Methods for Saturate Fraction Separated from Heavy Oil. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2018, 97, 45-52.	0.2	Ο
60	Epigenetic marks of Insulinâ€related transcription factor network by DNA methylation. FASEB Journal, 2010, 24, 713.4.	0.5	0
61	Enrichment of Short interspersed transposable elements (SINEs) in hypomethylated genic regions in embryonic stem cells. FASEB Journal, 2010, 24, 459.2.	0.5	0
62	CORRECTIONS: We apologize for the following error which occurred in Vol. 56, No. 2 (March issue), page 61 Journal of the Japan Petroleum Institute, 2012, 56, 180-181.	0.6	0
63	Synthesis of phenol from degraded lignin using synergistic effect of iron-oxide based catalysts: Oxidative cracking ability and acid-base properties. Catalysis Today, 2022, , .	4.4	0