Mnica Amorim

List of Publications by Citations

Source: https://exaly.com/author-pdf/1503094/monica-amorim-publications-by-citations.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

147
papers

2,924
citations

h-index

44
g-index

160
ext. papers

3,455
ext. citations

6.7
avg, IF

L-index

#	Paper	IF	Citations
147	Identification of the ecological requirements of important terrestrial ecotoxicological test species. <i>Environmental Reviews</i> , 2005 , 13, 51-83	4.5	121
146	Avoidance behaviour of Enchytraeus albidus: effects of benomyl, carbendazim, phenmedipham and different soil types. <i>Chemosphere</i> , 2005 , 59, 501-10	8.4	93
145	Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. <i>Environmental Pollution</i> , 2009 , 157, 625-	36 ³	86
144	Enchytraeus crypticus as model species in soil ecotoxicology. <i>Chemosphere</i> , 2012 , 87, 1222-7	8.4	77
143	Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. <i>Journal of Hazardous Materials</i> , 2013 , 254-255, 336-344	12.8	67
142	Enchytraeus albidus (Enchytraeidae): a test organism in a standardised avoidance test? Effects of different chemical substances. <i>Environment International</i> , 2008 , 34, 363-71	12.9	62
141	Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. <i>Environmental Pollution</i> , 2012 , 164, 164-8	9.3	60
140	Effect of different soil types on the enchytraeids Enchytraeus albidus and Enchytraeus luxuriosus using the herbicide Phenmedipham. <i>Chemosphere</i> , 2005 , 61, 1102-14	8.4	59
139	Effect of soil properties and aging on the toxicity of copper for Enchytraeus albidus, Enchytraeus luxuriosus, and Folsomia candida. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1875-85	3.8	59
138	Effects of silver nanoparticles to soil invertebrates: oxidative stress biomarkers in Eisenia fetida. <i>Environmental Pollution</i> , 2015 , 199, 49-55	9.3	57
137	Avoidance test with Enchytraeus albidus (Enchytraeidae): effects of different exposure time and soil properties. <i>Environmental Pollution</i> , 2008 , 155, 112-6	9.3	57
136	Enchytraeid Reproduction Test(PLUS): hatching, growth and full life cycle testan optional multi-endpoint test with Enchytraeus crypticus. <i>Ecotoxicology</i> , 2015 , 24, 1053-63	2.9	52
135	Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). <i>Nanotoxicology</i> , 2012 , 6, 134-43	5.3	51
134	Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. <i>Journal of Hazardous Materials</i> , 2016 , 318, 608-614	12.8	48
133	Predicted no effect concentration (PNEC) for triclosan to terrestrial species (invertebrates and plants). <i>Environment International</i> , 2010 , 36, 338-343	12.9	47
132	Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 71, 545-51	7	44
131	Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. <i>Environmental Pollution</i> , 2011 , 159, 1836-43	9.3	43

130	Effects of copper oxide nanomaterials (CuONMs) are life stage dependent - full life cycle in Enchytraeus crypticus. <i>Environmental Pollution</i> , 2017 , 224, 117-124	9.3	42	
129	Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 9589-602	4.6	42	
128	Effects of natural and chemical stressors on Enchytraeus albidus: can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils?. <i>Environment International</i> , 2009 , 35, 318-24	12.9	39	
127	Can avoidance in Enchytraeus albidus be used as a screening parameter for pesticides testing?. <i>Chemosphere</i> , 2010 , 79, 233-7	8.4	38	
126	Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124148	12.8	37	
125	Cu-nanoparticles ecotoxicityexplored and explained?. <i>Chemosphere</i> , 2015 , 139, 240-5	8.4	36	
124	Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 6858-78	4.6	35	
123	Adaptation of the lenchytraeid toxicity test for use with natural soil types. <i>European Journal of Soil Biology</i> , 2006 , 42, S234-S243	2.9	34	
122	Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl: exposure in the soil invertebrate Enchytraeus crypticus. <i>Scientific Reports</i> , 2017 , 7, 8457	4.9	33	
121	Effects of ivermectin on Danio rerio: a multiple endpoint approach: behaviour, weight and subcellular markers. <i>Ecotoxicology</i> , 2016 , 25, 491-9	2.9	32	
120	Oxidative stress biomarkers and metallothionein in Folsomia candidaresponses to Cu and Cd. <i>Environmental Research</i> , 2014 , 133, 164-9	7.9	31	
119	Transcriptome assembly and microarray construction for Enchytraeus crypticus, a model oligochaete to assess stress response mechanisms derived from soil conditions. <i>BMC Genomics</i> , 2014 , 15, 302	4.5	31	
118	Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil. <i>Environmental Pollution</i> , 2012 , 160, 145-52	9.3	31	
117	Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2934-2941	3.8	31	
116	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. <i>Environmental Science & Environmental Environ</i>	14-9:32	4 ³⁰	
115	Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. <i>Scientific Reports</i> , 2017 , 7, 1355	4.9	30	
114	Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2012 , 155, 219-27	3.2	30	
113	Biochemical characterization of cholinesterases in Enchytraeus albidus and assessment of in vivo and in vitro effects of different soil properties, copper and phenmedipham. <i>Ecotoxicology</i> , 2011 , 20, 119	9-38	30	

112	Effects of different soil types on the Collembolans Folsomia candida and Hypogastrura assimilis using the herbicide Phenmedipham. <i>Archives of Environmental Contamination and Toxicology</i> , 2005 , 49, 343-52	3.2	30
111	Bioaccumulation and elimination of 14C-lindane by Enchytraeus albidus in artificial (OECD) and a natural soil. <i>Chemosphere</i> , 2002 , 49, 323-9	8.4	30
110	Exposure of Enchytraeus albidus to Cd and Zn - changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. <i>Chemosphere</i> , 2013 , 90, 1305-9	8.4	29
109	Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 12530-42	4.6	28
108	High-throughput transcriptomics reveals uniquely affected pathways: AgNPs, PVP-coated AgNPs and Ag NM300K case studies. <i>Environmental Science: Nano</i> , 2017 , 4, 929-937	7.1	26
107	Non-avoidance behaviour in enchytraeids to boric acid is related to the GABAergic mechanism. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 6898-903	5.1	26
106	Dimethoate affects cholinesterases in Folsomia candida and their locomotionfalse negative results of an avoidance behaviour test. <i>Science of the Total Environment</i> , 2013 , 443, 821-7	10.2	25
105	Basal levels of enzymatic biomarkers and energy reserves in Porcellionides pruinosus. <i>Soil Biology and Biochemistry</i> , 2010 , 42, 2128-2136	7.5	25
104	Bioavailability and toxicokinetics of (14)C-lindane (gamma-HCH) in the enchytraeid Enchytraeus albidus in two soil types: the aging effect. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 43, 221-8	3.2	25
103	Epigenetic effects of (nano)materials in environmental species - Cu case study in Enchytraeus crypticus. <i>Environment International</i> , 2020 , 136, 105447	12.9	23
102	High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO, and Cu salt aged): transcriptomics in Enchytraeus crypticus. <i>Nanotoxicology</i> , 2018 , 12, 325-340	5.3	22
101	Earthworm avoidance of silver nanomaterials over time. <i>Environmental Pollution</i> , 2018 , 239, 751-756	9.3	22
100	Energy Basal Levels and Allocation among Lipids, Proteins, and Carbohydrates in Enchytraeus albidus: Changes Related to Exposure to Cu Salt and Cu Nanoparticles. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 477-482	2.6	22
99	Gene expression responses linked to reproduction effect concentrations (EC 10,20,50,90) of dimethoate, atrazine and carbendazim, in Enchytraeus albidus. <i>PLoS ONE</i> , 2012 , 7, e36068	3.7	22
98	Effect assessment of engineered nanoparticles in solid media - Current insight and the way forward. <i>Environmental Pollution</i> , 2016 , 218, 1370-1375	9.3	21
97	High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. <i>Environmental Pollution</i> , 2019 , 245, 131-140	9.3	20
96	Changes in cellular energy allocation in Enchytraeus albidus when exposed to dimethoate, atrazine, and carbendazim. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2800-7	3.8	19
95	Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2409-16	3.8	19

(2013-2004)

Tackling the heterogeneity of soils in ecotoxicological testing an euro-soil based approach. <i>Journal of Soils and Sediments</i> , 2004 , 4, 276-281	3.4	19	
On the safety of nanoformulations to non-target soil invertebrates han atrazine case study. <i>Environmental Science: Nano</i> , 2019 , 6, 1950-1958	7.1	18	
Development of an embryotoxicity test for Enchytraeus crypticusthe effect of Cd. <i>Chemosphere</i> , 2015 , 139, 386-92	8.4	18	
Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. <i>Journal of Geochemical Exploration</i> , 2014 , 144, 427-432	3.8	18	
Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2289-99	3.8	18	
Boric acid as reference substance: pros, cons and standardization. <i>Ecotoxicology</i> , 2012 , 21, 919-24	2.9	18	
Toxicity and bioaccumulation of phenanthrene in Enchytraeus albidus (Oligochaeta: Enchytraeidae). <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 967-72	3.8	18	
Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. <i>Environmental Science & Environmental Science & Envi</i>	10.3	17	
Adaptations of enchytraeids to single and combined effects of physical and chemical stressors. <i>Environmental Reviews</i> , 2016 , 24, 1-12	4.5	17	
Nanomaterials to microplastics: Swings and roundabouts. <i>Nano Today</i> , 2017 , 17, 7-10	17.9	17	
Interaction between density and Cu toxicity for Enchytraeus crypticuscomparing first and second generation effects. <i>Science of the Total Environment</i> , 2013 , 458-460, 361-6	10.2	17	
Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus. <i>Journal of Experimental Biology</i> , 2013 , 216, 2732-40	3	17	
Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1395-402	3.8	17	
Does long term low impact stress cause population extinction?. Environmental Pollution, 2017, 220, 101	49.19023	3 16	
Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silverlinkage to effects at higher level (reproduction). <i>Environmental Science and Pollution Research</i> , 2015 , 22, 14241	-7 ^{5.1}	16	
Interaction between density and Cu toxicity for Enchytraeus crypticus and Eisenia fetida reflecting field scenarios. <i>Science of the Total Environment</i> , 2011 , 409, 3370-4	10.2	16	
Multigenerational exposure of Folsomia candida to ivermectin 🗓 sing avoidance, survival,	6.7	16	
reproduction, size and cellular markers as endpoints. <i>Geoderma</i> , 2019 , 337, 273-279			
	On the safety of nanoformulations to non-target soil invertebrates (an atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958) Development of an embryotoxicity test for Enchytraeus crypticus—the effect of Cd. Chemosphere, 2015, 139, 386-92 Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 2014, 144, 427-432 Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. Environmental Toxicology and Chemistry, 2012, 31, 2289-99 Boric acid as reference substance: pros, cons and standardization. Ecotoxicology, 2012, 21, 919-24 Toxicity and bioaccumulation of phenanthrene in Enchytraeus albidus (Oligochaeta: Enchytraeidae). Environmental Toxicology and Chemistry, 2011, 30, 967-72 Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. Environmental Science & Samp; Technology, 2018, 52, 4413-4421 Adaptations of enchytraeids to single and combined effects of physical and chemical stressors. Environmental Reviews, 2016, 24, 1-12 Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10 Interaction between density and Cu toxicity for Enchytraeus crypticus—comparing first and second generation effects. Science of the Total Environment, 2013, 458-460, 361-6 Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus. Journal of Experimental Biology, 2013, 216, 2732-40 Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. Environmental Toxicology and Chemistry, 2011, 30, 1395-402 Does long term low impact stress cause population extinction?. Environmental Pollution, 2017, 220, 101 (Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silver-linkage to effects at higher level (reproduction). Environmental Science and Pollution Research, 2015, 22, 14	On the safety of nanoformulations to non-target soil invertebrates lan atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958 Development of an embryotoxicity test for Enchytraeus crypticus—the effect of Cd. Chemosphere, 2015, 139, 386-92 Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 2014, 144, 427-432 Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. Environmental Toxicology and Chemistry, 2012, 3,8 31,2289-99 Boric acid as reference substance: pros. cons and standardization. Ecotoxicology, 2012, 21, 919-24 2.9 Toxicity and bioaccumulation of phenanthrene in Enchytraeus albidus (Oligochaeta: Enchytraeidae). Environmental Toxicology and Chemistry, 2011, 30, 967-72 Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. Environmental Science & Samp. Technology, 2018, 52, 4413-4421 Adaptations of enchytraeids to single and combined effects of physical and chemical stressors. Environmental Reviews, 2016, 24, 1-12 Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10 17,9 Interaction between density and Cu toxicity for Enchytraeus crypticus—comparing first and second generation effects. Science of the Total Environment, 2013, 458-460, 361-6 Soil salmity increases survival of freezing in the enchytraeid Enchytraeus albidus. Journal of Experimental Biology, 2013, 216, 2732-40 Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. Environmental Toxicology and Chemistry, 2011, 30, 1395-402 Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. Environmental Toxicology and Chemistry, 2011, 30, 1395-402 Development of a microarray for Enchytraeus crypticus exposed to copper and silver—linkage to effects at higher level (repr	On the safety of nanoformulations to non-target soil invertebrates Ibn atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958 Development of an embryotoxicity test for Enchytraeus crypticus—the effect of Cd. Chemosphere, 2015, 139, 386-92 Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 2014, 144, 427-432 Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. Environmental Toxicology and Chemistry, 2012, 31, 2289-99 Boric acid as reference substance: pros, cons and standardization. Ecotoxicology, 2012, 21, 919-24 29 18 Toxicity and bioaccumulation of phenanthrene in Enchytraeus albidus (Oligochaeta: Enchytraeidae). Environmental Toxicology and Chemistry, 2011, 30, 967-72 Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. Environmental Science & Samp, Technology, 2018, 52, 4413-4421 Adaptations of enchytraeids to single and combined effects of physical and chemical stressors. Environmental Reviews, 2016, 24, 1-12 Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10 179 17 Interaction between density and Cu toxicity for Enchytraeus crypticus—comparing first and second generation effects. Science of the Total Environment, 2013, 458-460, 361-6 Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus. Journal of Experimental Biology, 2013, 216, 2732-40 Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. Environmental Toxicology and Chemistry, 2011, 30, 1395-402 Does long term low impact stress cause population extinction? Environmental Follution, 2017, 220, 1014-51023 16 Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silver—linkage to effects at higher level (reproduction). Environmental Science and Pollutio

76	Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 184-191	3.8	15
75	Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in Enchytraeus crypticus. <i>Environmental Science & Environmental Science & </i>	10.3	15
74	Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam. <i>Marine Environmental Research</i> , 2016 , 119, 31-9	3.3	14
73	Development of ecosystems to climate change and the interaction with pollution Unpredictable changes in community structures. <i>Applied Soil Ecology</i> , 2014 , 75, 24-32	5	13
72	Antioxidant and neurotoxicity markers in the model organism Enchytraeus albidus (Oligochaeta): mechanisms of response to atrazine, dimethoate and carbendazim. <i>Ecotoxicology</i> , 2014 , 23, 1220-33	2.9	13
71	Variation-preserving normalization unveils blind spots in gene expression profiling. <i>Scientific Reports</i> , 2017 , 7, 42460	4.9	13
70	Effects of soil properties and time of exposure on gene expression of Enchytraeus albidus (Oligochaeta). <i>Soil Biology and Biochemistry</i> , 2011 , 43, 2078-2084	7.5	13
69	High-throughput gene expression in soil invertebrate embryos - Mechanisms of Cd toxicity in Enchytraeus crypticus. <i>Chemosphere</i> , 2018 , 212, 87-94	8.4	12
68	Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. <i>Environmental Pollution</i> , 2014 , 186, 75-82	9.3	12
67	Novel understanding of toxicity in a life cycle perspective - The mechanisms that lead to population effect - The case of Ag (nano)materials. <i>Environmental Pollution</i> , 2020 , 262, 114277	9.3	12
66	Mechanisms of (photo)toxicity of TiO nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in Enchytraeus crypticus. <i>Nanoscale</i> , 2018 , 10, 21960-21970	7.7	12
65	The Proteome of Enchytraeus crypticus-Exposure to CuO Nanomaterial and CuCl -in Pursue of a Mechanistic Interpretation. <i>Proteomics</i> , 2018 , 18, e1800091	4.8	11
64	Differential gene expression analysis in Enchytraeus albidus exposed to natural and chemical stressors at different exposure periods. <i>Ecotoxicology</i> , 2012 , 21, 213-24	2.9	11
63	Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. <i>Materials</i> , 2020 , 13,	3.5	11
62	Mechanisms of phenanthrene toxicity in the soil invertebrate, Enchytraeus crypticus. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2713-2720	3.8	11
61	Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Reduced Full Life Cycle. <i>Nanomaterials</i> , 2019 , 9,	5.4	10
60	Population-specific transcriptional differences associated with freeze tolerance in a terrestrial worm. <i>Ecology and Evolution</i> , 2018 , 8, 3774-3786	2.8	10
59	Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids. <i>Environmental Science & Documental Sc</i>	10.3	10

58	The Enchytraeus crypticus stress metabolome - CuO NM case study. <i>Nanotoxicology</i> , 2018 , 12, 766-780	5.3	10
57	Multigenerational exposure to cobalt (CoCl) and WCCo nanoparticles in. <i>Nanotoxicology</i> , 2019 , 13, 751-	7 6 .6	9
56	Exploring DNA methylation patterns in copper exposed Folsomia candida and Enchytraeus crypticus. <i>Pedobiologia</i> , 2018 , 66, 52-57	1.7	9
55	Salinity changes impact of hazardous chemicals in Enchytraeus albidus. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2159-66	3.8	9
54	Enchytraeus albidus microarray: enrichment, design, annotation and database (EnchyBASE). <i>PLoS ONE</i> , 2012 , 7, e34266	3.7	9
53	Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	9
52	Combined effect of temperature and copper pollution on soil bacterial community: climate change and regional variation aspects. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 111, 153-9	7	8
51	The way forward for risk assessment of nanomaterials in solid media. <i>Environmental Pollution</i> , 2016 , 218, 1363-1364	9.3	8
50	Environmental hazard testing of nanobiomaterials. Environmental Sciences Europe, 2020, 32,	5	8
49	Enchytraeus crypticus fitness: effect of density on a two-generation study. <i>Ecotoxicology</i> , 2017 , 26, 570	- 5 75	7
48	Assessing the toxicity of safer by design CuO surface-modifications using terrestrial multispecies assays. <i>Science of the Total Environment</i> , 2019 , 678, 457-465	10.2	7
47	Multigenerational Exposure to WCCo Nanomaterials-Epigenetics in the Soil Invertebrate. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
46	Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species-A Screening Study. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
45	Multigenerational exposure of Folsomia candida to silver: Effect of different contamination scenarios (continuous versus pulsed and recovery). <i>Science of the Total Environment</i> , 2018 , 631-632, 326	5- 3 3 3	7
44	Cell Testing with Soil Invertebrates-Challenges and Opportunities toward Modeling the Effect of Nanomaterials: A Surface-Modified CuO Case Study. <i>Nanomaterials</i> , 2019 , 9,	5.4	7
43	Worms from the Arctic are better adapted to freezing and high salinity than worms from temperate regions: oxidative stress responses in Enchytraeus albidus. <i>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology</i> , 2013 , 166, 582-9	2.6	7
42	The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. <i>Environmental Pollution</i> , 2020 , 256, 113484	9.3	7
41	Exposure of Folsomia candida (Willem 1902) to teflubenzuron over three generations Increase of toxicity in the third generation. <i>Applied Soil Ecology</i> , 2019 , 134, 8-14	5	7

40	Confirmatory assays for transient changes of omics in soil invertebrates - Copper materials in a multigenerational exposure. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123500	12.8	7
39	Plastic pollution - A case study with Enchytraeus crypticus - From micro-to nanoplastics. <i>Environmental Pollution</i> , 2021 , 271, 116363	9.3	7
38	Implementing the DF4 in a robust model, allowing for enhanced comparison, prioritisation and grouping of Nanomaterials. <i>Regulatory Toxicology and Pharmacology</i> , 2018 , 92, 207-212	3.4	6
37	Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study. Journal of Materials Science: Materials in Medicine, 2018, 29, 51	4.5	6
36	Toxicity of fungicides to terrestrial non-target fauna - Formulated products versus active ingredients (azoxystrobin, cyproconazole, prothioconazole, tebuconazole) - A case study with Enchytraeus crypticus (Oligochaeta). <i>Science of the Total Environment</i> , 2021 , 754, 142098	10.2	6
35	Enchytraeus crypticus (Oligochaeta) is able to regeneratellonsiderations for a standard ecotoxicological species. <i>Applied Soil Ecology</i> , 2016 , 107, 320-323	5	5
34	Effect of Cu and Ni on cellular energy allocation in Enchytraeus albidus. <i>Ecotoxicology</i> , 2016 , 25, 1523-1	53.0)	5
33	Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing. <i>Frontiers in Environmental Science</i> , 2017 , 5,	4.8	5
32	Polystyrene Nanoplastics Can Alter the Toxicological Effects of Simvastatin on. <i>Toxics</i> , 2021 , 9,	4.7	5
31	Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO) - Metabolomics, proteomics (& transcriptomics). <i>Environmental Pollution</i> , 2021 , 286, 11757	19.3	5
30	Normal operating range (NOR) in Enchytraeus albidus lTranscriptional responses to control conditions. <i>Applied Soil Ecology</i> , 2015 , 85, 1-10	5	4
29	Developing an epigenetics model species - From blastula to mature adult, life cycle methylation profile of Enchytraeus crypticus (Oligochaete). <i>Science of the Total Environment</i> , 2020 , 732, 139079	10.2	4
28	Novel egg life-stage test with Folsomia candida - A case study with Cadmium (Cd). <i>Science of the Total Environment</i> , 2019 , 647, 121-126	10.2	4
27	Toxicokinetics of copper and cadmium in the soil model Enchytraeus crypticus (Oligochaeta). <i>Chemosphere</i> , 2021 , 270, 129433	8.4	4
26	Hazard assessment of the veterinary pharmaceuticals monensin and nicarbazin using a soil test battery. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 3145-3153	3.8	4
25	Identifying conserved UV exposure genes and mechanisms. <i>Scientific Reports</i> , 2018 , 8, 8605	4.9	4
24	Alternative test methods for (nano)materials hazards assessment: Challenges and recommendations for regulatory preparedness. <i>Nano Today</i> , 2021 , 40, 101242	17.9	4
23	Bridging international approaches on nanoEHS. <i>Nature Nanotechnology</i> , 2021 , 16, 608-611	28.7	3

(2021-2018)

22	Mixture toxicity assessment of a biocidal product based on reproduction and avoidance behaviour of the collembolan Folsomia candida. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 165, 284-290	7	3
21	Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus?. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7209	2.6	3
20	Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. <i>Lab Animal</i> , 2021 , 50, 285-294	0.4	3
19	Toxicity of boron and vanadium nanoparticles on Danio rerio embryos - Phenotypical, biochemical, and behavioral alterations. <i>Aquatic Toxicology</i> , 2021 , 238, 105930	5.1	3
18	Energy reserves and cellular energy allocation studies: Should food supply be provided?. <i>Geoderma</i> , 2016 , 284, 51-56	6.7	2
17	Uptake and Elimination of 4-Nonylphenol in the Enchytraeid Enchytraeus albidus. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2016 , 96, 156-61	2.7	2
16	Machine learning and materials modelling interpretation of toxicological response to TiO nanoparticles library (UV and non-UV exposure). <i>Nanoscale</i> , 2021 , 13, 14666-14678	7.7	2
15	Toxicokinetics of Ag (nano)materials in the soil model Enchytraeus crypticus (Oligochaeta) [Impact of aging and concentration. <i>Environmental Science: Nano</i> , 2021 , 8, 2629-2640	7.1	2
14	Environmental Hazards of Boron and Vanadium Nanoparticles in the Terrestrial Ecosystem-A Case Study with. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
13	Biomass ash formulations as sustainable improvers for mining soil health recovery: Linking soil properties and ecotoxicity. <i>Environmental Pollution</i> , 2021 , 291, 118165	9.3	2
12	How Can Nanoplastics Affect the Survival, Reproduction, and Behaviour of the Soil Model Enchytraeus crypticus?. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7674	2.6	1
11	Effect of freeze-thaw cycles and 4-nonylphenol on cellular energy allocation in the freeze-tolerant enchytraeid Enchytraeus albidus. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 3548-55	5.1	1
10	The Curious Case of Earthworms and COVID-19. <i>Biology</i> , 2021 , 10,	4.9	1
9	Embryotoxicity of silver nanomaterials (Ag NM300k) in the soil invertebrate Enchytraeus crypticus - Functional assay detects Ca channels shutdown <i>NanoImpact</i> , 2021 , 21, 100300	5.6	1
8	Molecular mechanisms of zinc toxicity in the potworm Enchytraeus crypticus, analysed by high-throughput gene expression profiling <i>Science of the Total Environment</i> , 2022 , 825, 153975	10.2	1
7	The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms <i>Environmental Pollution</i> , 2022 , 119166	9.3	1
6	High-throughput transcriptomics reveals mechanisms of nanopesticides [hanoformulation, commercial, active ingredient [finding safe and sustainable-by-design (SSbD) options for the environment. Environmental Science: Nano,	7.1	1
5	Impact of chromium on the soil invertebrate model Enchytraeus crypticus (Oligochaeta) in standard reproduction and full life cycle tests. <i>Chemosphere</i> , 2021 , 291, 132751	8.4	О

4	Nanopharmaceuticals (Au-NPs) after use: Experiences with a complex higher tier test design simulating environmental fate and effect. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 227, 112949	7	О
3	Toxicokinetics and toxicodynamics of copper and cadmium in the soil invertebrate Enchytraeus crypticus (Oligochaeta) <i>Ecotoxicology and Environmental Safety</i> , 2022 , 236, 113485	7	O
2	Assessment of diphenhydramine toxicity - Is its mode of action conserved between human and zebrafish?. <i>Environment International</i> , 2022 , 164, 107263	12.9	О
1	On virus and nanomaterials Lessons learned from the innate immune system LACE activation in the invertebrate model Enchytraeus crypticus. <i>Journal of Hazardous Materials</i> , 2022 , 436, 129173	12.8	O