
MÃ³nica Amorim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicokinetics of Chromium in Enchytraeus crypticus (Oligochaeta). Toxics, 2022, 10, 82.	1.6	3
2	Toxicokinetics and toxicodynamics of copper and cadmium in the soil invertebrate Enchytraeus crypticus (Oligochaeta). Ecotoxicology and Environmental Safety, 2022, 236, 113485.	2.9	3
3	Molecular mechanisms of zinc toxicity in the potworm Enchytraeus crypticus, analysed by high-throughput gene expression profiling. Science of the Total Environment, 2022, 825, 153975.	3.9	4
4	The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. Environmental Pollution, 2022, 303, 119166.	3.7	12
5	Co-Exposure of Nanopolystyrene and Other Environmental Contaminants—Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. Toxics, 2022, 10, 193.	1.6	4
6	Impacts of Longer-Term Exposure to AuNPs on Two Soil Ecotoxicological Model Species. Toxics, 2022, 10, 153.	1.6	3
7	High-throughput transcriptomics reveals the mechanisms of nanopesticides – nanoformulation, commercial formulation, active ingredient – finding safe and sustainable-by-design (SSbD) options for the environment. Environmental Science: Nano, 2022, 9, 2182-2194.	2.2	5
8	Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 2022, 12, 1478.	1.9	2
9	COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 2022, 1, 282-290.	1.6	12
10	Assessment of diphenhydramine toxicity – Is its mode of action conserved between human and zebrafish?. Environment International, 2022, 164, 107263.	4.8	9
11	On virus and nanomaterials – Lessons learned from the innate immune system – ACE activation in the invertebrate model Enchytraeus crypticus. Journal of Hazardous Materials, 2022, 436, 129173.	6.5	2
12	Full life cycle test with Eisenia fetida - copper oxide NM toxicity assessment. Ecotoxicology and Environmental Safety, 2022, 241, 113720.	2.9	2
13	Confirmatory assays for transient changes of omics in soil invertebrates – Copper materials in a multigenerational exposure. Journal of Hazardous Materials, 2021, 402, 123500.	6.5	15
14	Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148.	6.5	94
15	Toxicity of fungicides to terrestrial non-target fauna – Formulated products versus active ingredients (azoxystrobin, cyproconazole, prothioconazole, tebuconazole) – A case study with Enchytraeus crypticus (Oligochaeta). Science of the Total Environment, 2021, 754, 142098.	3.9	20
16	Machine learning and materials modelling interpretation of <i>in vivo</i> toxicological response to TiO ₂ nanoparticles library (UV and non-UV exposure). Nanoscale, 2021, 13, 14666-14678.	2.8	10
17	Toxicokinetics of Ag (nano)materials in the soil model <i>Enchytraeus crypticus</i> (Oligochaeta) – impact of aging and concentration. Environmental Science: Nano, 2021, 8, 2629-2640.	2.2	8
18	Embryotoxicity of silver nanomaterials (Ag NM300k) in the soil invertebrate Enchytraeus crypticus – Functional assay detects Ca channels shutdown, NanoImpact, 2021, 21, 100300.	2.4	5

#	Article	IF	CITATIONS
19	Polystyrene Nanoplastics Can Alter the Toxicological Effects of Simvastatin on Danio rerio. Toxics, 2021, 9, 44.	1.6	10
20	Plastic pollution – A case study with Enchytraeus crypticus – From micro-to nanoplastics. Environmental Pollution, 2021, 271, 116363.	3.7	24
21	Bridging international approaches on nanoEHS. Nature Nanotechnology, 2021, 16, 608-611.	15.6	6
22	Toxicokinetics of copper and cadmium in the soil model Enchytraeus crypticus (Oligochaeta). Chemosphere, 2021, 270, 129433.	4.2	10
23	Environmental Hazards of Boron and Vanadium Nanoparticles in the Terrestrial Ecosystem—A Case Study with Enchytraeus crypticus. Nanomaterials, 2021, 11, 1937.	1.9	12
24	Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus?. Applied Sciences (Switzerland), 2021, 11, 7209.	1.3	9
25	Reactive Oxygen Species Detection Using Fluorescence in Enchytraeus crypticus—Method Implementation through Ag NM300K Case Study. Toxics, 2021, 9, 232.	1.6	2
26	Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. Lab Animal, 2021, 50, 285-294.	0.2	11
27	Toxicity of boron and vanadium nanoparticles on Danio rerio embryos – Phenotypical, biochemical, and behavioral alterations. Aquatic Toxicology, 2021, 238, 105930.	1.9	12
28	Alternative test methods for (nano)materials hazards assessment: Challenges and recommendations for regulatory preparedness. Nano Today, 2021, 40, 101242.	6.2	21
29	Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO3) – Metabolomics, proteomics (& transcriptomics). Environmental Pollution, 2021, 286, 117571.	3.7	14
30	Biomass ash formulations as sustainable improvers for mining soil health recovery: Linking soil properties and ecotoxicity. Environmental Pollution, 2021, 291, 118165.	3.7	5
31	The Curious Case of Earthworms and COVID-19. Biology, 2021, 10, 1043.	1.3	1
32	Impact of chromium on the soil invertebrate model Enchytraeus crypticus (Oligochaeta) in standard reproduction and full life cycle tests. Chemosphere, 2021, 291, 132751.	4.2	5
33	Nanopharmaceuticals (Au-NPs) after use: Experiences with a complex higher tier test design simulating environmental fate and effect. Ecotoxicology and Environmental Safety, 2021, 227, 112949.	2.9	9
34	The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. Environmental Pollution, 2020, 256, 113484.	3.7	10
35	Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. Materials, 2020, 13, 4532.	1.3	26
36	How Can Nanoplastics Affect the Survival, Reproduction, and Behaviour of the Soil Model Enchytraeus crypticus?. Applied Sciences (Switzerland), 2020, 10, 7674.	1.3	5

#	Article	IF	CITATIONS
37	Developing an epigenetics model species - From blastula to mature adult, life cycle methylation profile of Enchytraeus crypticus (Oligochaete). Science of the Total Environment, 2020, 732, 139079.	3.9	7
38	Multigenerational Exposure to WCCo Nanomaterials—Epigenetics in the Soil Invertebrate Enchytraeus crypticus. Nanomaterials, 2020, 10, 836.	1.9	13
39	Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species—A Screening Study. Nanomaterials, 2020, 10, 402.	1.9	15
40	Epigenetic effects of (nano)materials in environmental species – Cu case study in Enchytraeus crypticus. Environment International, 2020, 136, 105447.	4.8	39
41	Novel understanding of toxicity in a life cycle perspective – The mechanisms that lead to population effect – The case of Ag (nano)materials. Environmental Pollution, 2020, 262, 114277.	3.7	22
42	Environmental hazard testing of nanobiomaterials. Environmental Sciences Europe, 2020, 32, .	2.6	15
43	Novel egg life-stage test with Folsomia candida – A case study with Cadmium (Cd). Science of the Total Environment, 2019, 647, 121-126.	3.9	8
44	Cell In Vitro Testing with Soil Invertebrates—Challenges and Opportunities toward Modeling the Effect of Nanomaterials: A Surface-Modified CuO Case Study. Nanomaterials, 2019, 9, 1087.	1.9	8
45	On the safety of nanoformulations to non-target soil invertebrates – an atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958.	2.2	28
46	Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. Nanomaterials, 2019, 9, 858.	1.9	15
47	Assessing the toxicity of safer by design CuO surface-modifications using terrestrial multispecies assays. Science of the Total Environment, 2019, 678, 457-465.	3.9	10
48	Multigenerational exposure to cobalt (CoCl ₂) and WCCo nanoparticles in <i>Enchytraeus crypticus</i> . Nanotoxicology, 2019, 13, 751-760.	1.6	13
49	Exposure of Folsomia candida (Willem 1902) to teflubenzuron over three generations – Increase of toxicity in the third generation. Applied Soil Ecology, 2019, 134, 8-14.	2.1	15
50	High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. Environmental Pollution, 2019, 245, 131-140.	3.7	29
51	Multigenerational exposure of Folsomia candida to ivermectin – Using avoidance, survival, reproduction, size and cellular markers as endpoints. Geoderma, 2019, 337, 273-279.	2.3	25
52	High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO ₃ , and) Tj ETQq0	0 0 rgBT 1.6	/Oyerlock 10
53	Interactions of Soil Species Exposed to CuO NMs are Different From Cu Salt: A Multispecies Test. Environmental Science & Technology, 2018, 52, 4413-4421.	4.6	25

Multigenerational exposure of Folsomia candida to silver: Effect of different contamination scenarios (continuous versus pulsed and recovery). Science of the Total Environment, 2018, 631-632, 3.9 13 326-333.

#	Article	IF	CITATIONS
55	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Technology, 2018, 52, 1514-1524.	4.6	36
56	Implementing the DF4 in a robust model, allowing for enhanced comparison, prioritisation and grouping of Nanomaterials. Regulatory Toxicology and Pharmacology, 2018, 92, 207-212.	1.3	6
57	Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study. Journal of Materials Science: Materials in Medicine, 2018, 29, 51.	1.7	7
58	Populationâ€specific transcriptional differences associated with freeze tolerance in a terrestrial worm. Ecology and Evolution, 2018, 8, 3774-3786.	0.8	12
59	Exploring DNA methylation patterns in copper exposed Folsomia candida and Enchytraeus crypticus. Pedobiologia, 2018, 66, 52-57.	0.5	14
60	Silver (nano)materials cause genotoxicity in Enchytraeus crypticus , as determined by the comet assay. Environmental Toxicology and Chemistry, 2018, 37, 184-191.	2.2	18
61	Mechanisms of (photo)toxicity of TiO ₂ nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in <i>Enchytraeus crypticus</i> . Nanoscale, 2018, 10, 21960-21970.	2.8	17
62	Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in <i>Enchytraeus crypticus</i> . Environmental Science & Technology, 2018, 52, 11394-11401.	4.6	25
63	Mixture toxicity assessment of a biocidal product based on reproduction and avoidance behaviour of the collembolan Folsomia candida. Ecotoxicology and Environmental Safety, 2018, 165, 284-290.	2.9	5
64	Hazard assessment of the veterinary pharmaceuticals monensin and nicarbazin using a soil test battery. Environmental Toxicology and Chemistry, 2018, 37, 3145-3153.	2.2	6
65	Identifying conserved UV exposure genes and mechanisms. Scientific Reports, 2018, 8, 8605.	1.6	7
66	The <i>Enchytraeus crypticus</i> stress metabolome – CuO NM case study. Nanotoxicology, 2018, 12, 766-780.	1.6	11
67	Earthworm avoidance of silver nanomaterials over time. Environmental Pollution, 2018, 239, 751-756.	3.7	29
68	The Proteome of <i>Enchytraeus crypticus</i> —Exposure to CuO Nanomaterial and CuCl ₂ —in Pursue of a Mechanistic Interpretation. Proteomics, 2018, 18, e1800091.	1.3	13
69	High-throughput gene expression in soil invertebrate embryos – Mechanisms of Cd toxicity in Enchytraeus crypticus. Chemosphere, 2018, 212, 87-94.	4.2	17
70	Effects of copper oxide nanomaterials (CuONMs) are life stage dependent – full life cycle in Enchytraeus crypticus. Environmental Pollution, 2017, 224, 117-124.	3.7	53
71	Enchytraeus crypticus fitness: effect of density on a two-generation study. Ecotoxicology, 2017, 26, 570-575.	1.1	9
72	High-throughput transcriptomics reveals uniquely affected pathways: AgNPs, PVP-coated AgNPs and Ag NM300K case studies. Environmental Science: Nano, 2017, 4, 929-937.	2.2	32

#	Article	IF	CITATIONS
73	Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl2: exposure in the soil invertebrate Enchytraeus crypticus. Scientific Reports, 2017, 7, 8457.	1.6	42
74	Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10.	6.2	21
75	Variation-preserving normalization unveils blind spots in gene expression profiling. Scientific Reports, 2017, 7, 42460.	1.6	19
76	Hazard assessment of nickel nanoparticles in soil—The use of a full life cycle test with <i>Enchytraeus crypticus</i> . Environmental Toxicology and Chemistry, 2017, 36, 2934-2941.	2.2	43
77	Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Scientific Reports, 2017, 7, 1355.	1.6	34
78	Does long term low impact stress cause population extinction?. Environmental Pollution, 2017, 220, 1014-1023.	3.7	23
79	Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing. Frontiers in Environmental Science, 2017, 5, .	1.5	8
80	The Daunting Challenge of Ensuring Sustainable Development of Nanomaterials. International Journal of Environmental Research and Public Health, 2016, 13, 245.	1.2	8
81	Mechanisms of phenanthrene toxicity in the soil invertebrate, <i>Enchytraeus crypticus</i> . Environmental Toxicology and Chemistry, 2016, 35, 2713-2720.	2.2	16
82	Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	10
83	Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam Marine Environmental Research, 2016, 119, 31-39.	1.1	18
84	Energy reserves and cellular energy allocation studies: Should food supply be provided?. Geoderma, 2016, 284, 51-56.	2.3	2
85	Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus. Journal of Hazardous Materials, 2016, 318, 608-614.	6.5	68
86	Enchytraeus crypticus (Oligochaeta) is able to regenerate—Considerations for a standard ecotoxicological species. Applied Soil Ecology, 2016, 107, 320-323.	2.1	7
87	Effect of Cu and Ni on cellular energy allocation in Enchytraeus albidus. Ecotoxicology, 2016, 25, 1523-1530.	1.1	5
88	Effect of freeze-thaw cycles and 4-nonylphenol on cellular energy allocation in the freeze-tolerant enchytraeid Enchytraeus albidus. Environmental Science and Pollution Research, 2016, 23, 3548-3555.	2.7	2
89	The way forward for risk assessment of nanomaterials in solid media. Environmental Pollution, 2016, 218, 1363-1364.	3.7	9
90	Effects of ivermectin on Danio rerio: a multiple endpoint approach: behaviour, weight and subcellular markers. Ecotoxicology, 2016, 25, 491-499.	1.1	46

#	Article	IF	CITATIONS
91	Effect assessment of engineered nanoparticles in solid media – Current insight and the way forward. Environmental Pollution, 2016, 218, 1370-1375.	3.7	23
92	Uptake and Elimination of 4-Nonylphenol in the Enchytraeid Enchytraeus albidus. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 156-161.	1.3	3
93	Adaptations of enchytraeids to single and combined effects of physical and chemical stressors. Environmental Reviews, 2016, 24, 1-12.	2.1	22
94	Salinity changes impact of hazardous chemicals in <i>Enchytraeus albidus</i> . Environmental Toxicology and Chemistry, 2015, 34, 2159-2166.	2.2	10
95	Effect of 10 different TiO ₂ and ZrO ₂ (nano)materials on the soil invertebrate <i>Enchytraeus crypticus</i> . Environmental Toxicology and Chemistry, 2015, 34, 2409-2416.	2.2	26
96	Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. International Journal of Environmental Research and Public Health, 2015, 12, 9589-9602.	1.2	53
97	Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). International Journal of Environmental Research and Public Health, 2015, 12, 12530-12542.	1.2	38
98	Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag. International Journal of Environmental Research and Public Health, 2015, 12, 6858-6878.	1.2	48
99	Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silver—linkage to effects at higher level (reproduction). Environmental Science and Pollution Research, 2015, 22, 14241-14247.	2.7	17
100	Effects of silver nanoparticles to soil invertebrates: Oxidative stress biomarkers in Eisenia fetida. Environmental Pollution, 2015, 199, 49-55.	3.7	69
101	Non-avoidance behaviour in enchytraeids to boric acid is related to the GABAergic mechanism. Environmental Science and Pollution Research, 2015, 22, 6898-6903.	2.7	36
102	Development of an embryotoxicity test for Enchytraeus crypticus $\hat{a} \in $ The effect of Cd. Chemosphere, 2015, 139, 386-392.	4.2	22
103	Enchytraeid Reproduction TestPLUS: hatching, growth and full life cycle test—an optional multi-endpoint test with Enchytraeus crypticus. Ecotoxicology, 2015, 24, 1053-1063.	1.1	70
104	Cu-nanoparticles ecotoxicity $\hat{a} \in \hat{c}$ Explored and explained?. Chemosphere, 2015, 139, 240-245.	4.2	43
105	Combined effect of temperature and copper pollution on soil bacterial community: Climate change and regional variation aspects. Ecotoxicology and Environmental Safety, 2015, 111, 153-159.	2.9	8
106	Normal operating range (NOR) in Enchytraeus albidus – Transcriptional responses to control conditions. Applied Soil Ecology, 2015, 85, 1-10.	2.1	4
107	Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 2014, 144, 427-432.	1.5	22
108	Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: Comparison with Cd and Zn. Environmental Pollution, 2014, 186, 75-82.	3.7	14

#	Article	IF	CITATIONS
109	Development of ecosystems to climate change and the interaction with pollution—Unpredictable changes in community structures. Applied Soil Ecology, 2014, 75, 24-32.	2.1	14
110	Oxidative stress biomarkers and metallothionein in Folsomia candida - responses to Cu and Cd. Environmental Research, 2014, 133, 164-169.	3.7	45
111	Importance of Freeze–Thaw Events in Low Temperature Ecotoxicology of Cold Tolerant Enchytraeids. Environmental Science & Technology, 2014, 48, 9790-9796.	4.6	12
112	Antioxidant and neurotoxicity markers in the model organism Enchytraeus albidus (Oligochaeta): mechanisms of response to atrazine, dimethoate and carbendazim. Ecotoxicology, 2014, 23, 1220-1233.	1.1	17
113	Transcriptome assembly and microarray construction for Enchytraeus crypticus, a model oligochaete to assess stress response mechanisms derived from soil conditions. BMC Genomics, 2014, 15, 302.	1.2	35
114	Effects of temperature and copper pollution on soil community—extreme temperature events can lead to community extinction. Environmental Toxicology and Chemistry, 2013, 32, 2678-2685.	2.2	17
115	Changes in cellular energy allocation in <i>Enchytraeus albidus</i> when exposed to dimethoate, atrazine, and carbendazim. Environmental Toxicology and Chemistry, 2013, 32, 2800-2807.	2.2	23
116	Worms from the Arctic are better adapted to freezing and high salinity than worms from temperate regions: Oxidative stress responses in Enchytraeus albidus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 582-589.	0.8	9
117	Exposure of Enchytraeus albidus to Cd and Zn – Changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. Chemosphere, 2013, 90, 1305-1309.	4.2	36
118	Dimethoate affects cholinesterases in Folsomia candida and their locomotion — False negative results of an avoidance behaviour test. Science of the Total Environment, 2013, 443, 821-827.	3.9	32
119	Interaction between density and Cu toxicity for Enchytraeus crypticus – Comparing first and second generation effects. Science of the Total Environment, 2013, 458-460, 361-366.	3.9	18
120	Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): Survival, reproduction and gene expression profile. Journal of Hazardous Materials, 2013, 254-255, 336-344.	6.5	75
121	Soil salinity increases survival of freezing in the enchytraeid <i>Enchytraeus albidus</i> . Journal of Experimental Biology, 2013, 216, 2732-40.	0.8	18
122	Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 219-227.	1.3	38
123	Transcriptional responses in <i>Enchytraeus albidus</i> (Oligochaeta): Comparison between cadmium and zinc exposure and linkage to reproduction effects. Environmental Toxicology and Chemistry, 2012, 31, 2289-2299.	2.2	21
124	Effect of Cu-nanoparticles versus one Cu-salt: Analysis of stress biomarkers response in <i>Enchytraeus albidus</i> (Oligochaeta). Nanotoxicology, 2012, 6, 134-143.	1.6	59
125	Enchytraeus albidus Microarray: Enrichment, Design, Annotation and Database (EnchyBASE). PLoS ONE, 2012, 7, e34266.	1.1	10
126	Gene Expression Responses Linked to Reproduction Effect Concentrations (EC10,20,50,90) of Dimethoate, Atrazine and Carbendazim, in Enchytraeus albidus. PLoS ONE, 2012, 7, e36068.	1.1	26

#	Article	IF	CITATIONS
127	Boric acid as reference substance: pros, cons and standardization. Ecotoxicology, 2012, 21, 919-924.	1.1	23
128	Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere, 2012, 87, 1222-1227.	4.2	96
129	Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil. Environmental Pollution, 2012, 160, 145-152.	3.7	39
130	Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: Survival, reproduction and avoidance responses. Environmental Pollution, 2012, 164, 164-168.	3.7	71
131	Energy Basal Levels and Allocation among Lipids, Proteins, and Carbohydrates in Enchytraeus albidus: Changes Related to Exposure to Cu Salt and Cu Nanoparticles. Water, Air, and Soil Pollution, 2012, 223, 477-482.	1.1	25
132	Differential gene expression analysis in Enchytraeus albidus exposed to natural and chemical stressors at different exposure periods. Ecotoxicology, 2012, 21, 213-224.	1.1	11
133	Effects of soil properties and time of exposure on gene expression of Enchytraeus albidus (Oligochaeta). Soil Biology and Biochemistry, 2011, 43, 2078-2084.	4.2	13
134	Interaction between density and Cu toxicity for Enchytraeus crypticus and Eisenia fetida reflecting field scenarios. Science of the Total Environment, 2011, 409, 3370-3374.	3.9	18
135	Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution, 2011, 159, 1836-1843.	3.7	50
136	Biochemical characterization of cholinesterases in Enchytraeus albidus and assessment of in vivo and in viro effects of different soil properties, copper and phenmedipham. Ecotoxicology, 2011, 20, 119-130.	1.1	30
137	Toxicity and bioaccumulation of phenanthrene in <i>Enchytraeus albidus</i> (Oligochaeta:) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf.
138	Development of a microarray for <i>Enchytraeus albidus</i> (Oligochaeta): preliminary tool with diverse applications. Environmental Toxicology and Chemistry, 2011, 30, 1395-1402.	2.2	17
139	Basal levels of enzymatic biomarkers and energy reserves in Porcellionides pruinosus. Soil Biology and Biochemistry, 2010, 42, 2128-2136.	4.2	27
140	Predicted No Effect Concentration (PNEC) for triclosan to terrestrial species (invertebrates and) Tj ETQq0 0 0 rgBT	Overlock 4.8	₹ 10 Tf 50 22
141	Can avoidance in Enchytraeus albidus be used as a screening parameter for pesticides testing?. Chemosphere, 2010, 79, 233-237.	4.2	41
142	Effects of natural and chemical stressors on Enchytraeus albidus: Can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils?. Environment International, 2009, 35, 318-324.	4.8	49
143	Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. Environmental Pollution, 2009, 157, 625-636.	3.7	92
144	Avoidance test with Enchytraeus albidus (Enchytraeidae): Effects of different exposure time and soil	3.7	63

Avoidance test with Enchytraeus albidus (Enchytraeidae): Effects of different exposure time and soil properties. Environmental Pollution, 2008, 155, 112-116. 3.7 144

#	Article	IF	CITATIONS
145	Avoidance tests with earthworms and springtails: Defining the minimum exposure time to observe a significant response. Ecotoxicology and Environmental Safety, 2008, 71, 545-551.	2.9	49
146	Enchytraeus albidus (Enchytraeidae): A test organism in a standardised avoidance test? Effects of different chemical substances. Environment International, 2008, 34, 363-371.	4.8	65
147	Adaptation ofÂtheÂenchytraeid toxicity test forÂuse with natural soil types. European Journal of Soil Biology, 2006, 42, S234-S243.	1.4	46
148	EFFECT OF SOIL PROPERTIES AND AGING ON THE TOXICITY OF COPPER FOR ENCHYTRAEUS ALBIDUS, ENCHYTRAEUS LUXURIOSUS, AND FOLSOMIA CANDIDA. Environmental Toxicology and Chemistry, 2005, 24, 1875.	2.2	71
149	Effects of Different Soil Types on the Collembolans Folsomia candida and Hypogastrura assimilis Using the Herbicide Phenmedipham. Archives of Environmental Contamination and Toxicology, 2005, 49, 343-352.	2.1	34
150	Identification of the ecological requirements of important terrestrial ecotoxicological test species. Environmental Reviews, 2005, 13, 51-83.	2.1	145
151	Avoidance behaviour of Enchytraeus albidus: Effects of Benomyl, Carbendazim, phenmedipham and different soil types. Chemosphere, 2005, 59, 501-510.	4.2	109
152	Effect of different soil types on the enchytraeids Enchytraeus albidus and Enchytraeus luxuriosus using the herbicide Phenmedipham. Chemosphere, 2005, 61, 1102-1114.	4.2	66
153	Tackling the heterogeneity of soils in ecotoxicological testing an euro-soil based approach. Journal of Soils and Sediments, 2004, 4, 276-281.	1.5	23
154	Bioaccumulation and elimination of -lindane by Enchytraeus albidus in artificial (OECD) and a natural soil. Chemosphere, 2002, 49, 323-329.	4.2	34
155	Bioavailability and Toxicokinetics of 14C-Lindane (Î ³ -HCH) in the Enchytraeid Enchytraeus albidus in Two Soil Types: The Aging Effect. Archives of Environmental Contamination and Toxicology, 2002, 43,	2.1	26