Paulius Pobedinskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1502698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exciton hopping inInxGa1â^xNmultiple quantum wells. Physical Review B, 2005, 71, .	3.2	79
2	Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal–insulator transition. New Journal of Physics, 2011, 13, 083008.	2.9	68
3	Photoluminescence in sol–gel-derived YAG:Ce phosphors. Journal of Crystal Growth, 2007, 304, 361-368.	1.5	61
4	Thickness dependent residual stress in sputtered AlN thin films. Thin Solid Films, 2012, 522, 180-185.	1.8	30
5	Surface plasma pretreatment for enhanced diamond nucleation on AlN. Applied Physics Letters, 2013, 102, .	3.3	29
6	Development of multichannel quartz crystal microbalances for MIPâ€based biosensing. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 892-899.	1.8	26
7	On the Origin of Diamond Plates Deposited at Low Temperature. Crystal Growth and Design, 2017, 17, 4306-4314.	3.0	24
8	Thick homoepitaxial (110)-oriented phosphorus-doped <i>n</i> -type diamond. Applied Physics Letters, 2016, 109, .	3.3	22
9	Nanodiamond seeding on plasma-treated tantalum thin films and the role of surface contamination. Applied Surface Science, 2021, 538, 148016.	6.1	21
10	Phosphor Thermometry in White Light-Emitting Diodes. IEEE Photonics Technology Letters, 2007, 19, 399-401.	2.5	19
11	Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated graphene nanoflakes. RSC Advances, 2016, 6, 63178-63184.	3.6	19
12	Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon, 2019, 145, 740-750.	10.3	19
13	Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all-optical methods. Thin Solid Films, 2015, 590, 284-292.	1.8	18
14	The pressure sensitivity of wrinkled B-doped nanocrystalline diamond membranes. Scientific Reports, 2016, 6, 35667.	3.3	18
15	Impact of methane concentration on surface morphology and boron incorporation of heavily boron-doped single crystal diamond layers. Carbon, 2021, 172, 463-473.	10.3	18
16	Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Nanotechnology, 2017, 28, 065701.	2.6	17
17	Origin of Conductive Nanocrystalline Diamond Nanoneedles for Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 25388-25398.	8.0	16
18	Large area microwave plasma CVD of diamond using composite right/left-handed materials. Diamond and Related Materials, 2021, 116, 108394.	3.9	16

PAULIUS POBEDINSKAS

#	Article	IF	CITATIONS
19	Probing the flat band potential and effective electronic carrier density in vertically aligned nitrogen doped diamond nanorods via electrochemical method. Electrochimica Acta, 2017, 246, 68-74.	5.2	15
20	Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films. Applied Physics Letters, 2017, 110, .	3.3	14
21	Optical phonon lifetimes in sputtered AIN thin films. Applied Physics Letters, 2012, 100, 191906.	3.3	13
22	Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Scientific Reports, 2016, 6, 29444.	3.3	13
23	All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1532347.	1.8	13
24	Growth of Boron-Doped Diamond Films on Gold-Coated Substrates with and without Gold Nanoparticle Formation. Crystal Growth and Design, 2019, 19, 3567-3575.	3.0	13
25	Reusable chromium-coated quartz crystal microbalance for immunosensing. Colloids and Surfaces B: Biointerfaces, 2011, 88, 191-195.	5.0	12
26	CVD diamond growth from nanodiamond seeds buried under a thin chromium layer. Diamond and Related Materials, 2016, 64, 163-168.	3.9	12
27	Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls. Crystal Growth and Design, 2016, 16, 3699-3708.	3.0	11
28	AlN on nanocrystalline diamond piezoelectric cantilevers for sensors/actuators. Procedia Chemistry, 2009, 1, 40-43.	0.7	10
29	Influence of hydrogen and hydrogen/methane plasmas on AlN thin films. Applied Physics Letters, 2014, 104, 081917.	3.3	9
30	Improved nanodiamond seeding on chromium by surface plasma pretreatment. Chemical Physics Letters, 2015, 640, 50-54.	2.6	9
31	Hierarchical hexagonal boron nitride nanowall–diamond nanorod heterostructures with enhanced optoelectronic performance. RSC Advances, 2016, 6, 90338-90346.	3.6	9
32	Direct nucleation of hexagonal boron nitride on diamond: Crystalline properties of hBN nanowalls. Acta Materialia, 2017, 127, 17-24.	7.9	9
33	A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications. Proceedings (mdpi), 2017, 1, .	0.2	9
34	Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films. Nanomaterials, 2020, 10, 1024.	4.1	9
35	Defect attributed variations of the photoconductivity and photoluminescence in the HVPE and MOCVD as-grown and irradiated GaN structures. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 552, 82-87	1.6	7
36	Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines. Review of Scientific Instruments, 2013, 84, 035105.	1.3	7

#	Article	IF	CITATIONS
37	Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 2018, 8, 653.	4.1	7
38	Microstructural Effect on the Enhancement of Field Electron Emission Properties of Nanocrystalline Diamond Films by Li-Ion Implantation and Annealing Processes. ACS Omega, 2018, 3, 9956-9965.	3.5	7
39	Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 1614-1618.	1.5	6
40	Resonantly excited AlN-based microcantilevers for immunosensing. Microsystem Technologies, 2012, 18, 1089-1094.	2.0	6
41	Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2654-2661.	1.8	5
42	Photoluminescence temperature behavior and Monte Carlo simulation of exciton hopping in InGaN multiple quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2809-2812.	0.8	4
43	Resonant piezoelectric AlN-actuated microcantilevers for detection of antigen/antibody interactions. Proceedings of SPIE, 2011, , .	0.8	1
44	Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods. MRS Communications, 2018, 8, 1311-1320.	1.8	1
45	20 Years of Science for Diamond. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2364-2364.	1.8	0
46	Recent Advances in Diamond Science and Technology. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2550-2550.	1.8	0