
Stephanie Pau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1502437/publications.pdf Version: 2024-02-01

STEDHANIE DALL

#	Article	IF	CITATIONS
1	Poor relationships between NEON Airborne Observation Platform data and fieldâ€based vegetation traits at a mesic grassland. Ecology, 2022, 103, e03590.	3.2	8
2	Evaluation of Plant Stress Monitoring Capabilities Using a Portable Spectrometer and Blue-Red Grow Light. Sensors, 2022, 22, 3411.	3.8	1
3	Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytologist, 2021, 230, 1746-1753.	7.3	47
4	Global tropical dry forest extent and cover: A comparative study of bioclimatic definitions using two climatic data sets. PLoS ONE, 2021, 16, e0252063.	2.5	16
5	Leveraging the NEON Airborne Observation Platform for socioâ€environmental systems research. Ecosphere, 2021, 12, e03640.	2.2	7
6	Modelling the biodiversity enhancement value of seagrass beds. Diversity and Distributions, 2021, 27, 2036-2049.	4.1	15
7	Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences, 2021, 18, 6077-6091.	3.3	9
8	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	7.3	20
9	Characterization of chlorophyll fluorescence, absorbed photosynthetically active radiation, and reflectance-based vegetation index spectroradiometer measurements. International Journal of Remote Sensing, 2020, 41, 6755-6782.	2.9	7
10	Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nature Climate Change, 2020, 10, 777-780.	18.8	84
11	Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Global Ecology and Biogeography, 2020, 29, 696-710.	5.8	29
12	Remote Sensing of Geodiversity as a Link to Biodiversity. , 2020, , 225-253.		4
13	The impact of Hurricane Michael on longleaf pine habitats in Florida. Scientific Reports, 2020, 10, 8483.	3.3	34
14	Climatic sensitivity of species' vegetative and reproductive phenology in a Hawaiian montane wet forest. Biotropica, 2020, 52, 825-835.	1.6	8
15	Spatiotemporal Patterns and Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using Satellite Observations. Remote Sensing, 2019, 11, 1746.	4.0	21
16	When Do Ecosystem Services Depend on Rare Species?. Trends in Ecology and Evolution, 2019, 34, 746-758.	8.7	159
17	Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Global Ecology and Biogeography, 2019, 28, 548-556.	5.8	87
18	Longâ€ŧerm increases in tropical flowering activity across growth forms in response to rising <scp>CO</scp> ₂ and climate change. Global Change Biology, 2018, 24, 2105-2116.	9.5	19

Stephanie Pau

#	Article	IF	CITATIONS
19	Climatic Controls on C4 Grassland Distributions During the Neogene: A Model-Data Comparison. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	15
20	Tropical forest temperature thresholds for gross primary productivity. Ecosphere, 2018, 9, e02311.	2.2	69
21	Root Functional Diversity of Native and Nonnative C3 and C4 Grass Species in Hawaiâ€~i1. Pacific Science, 2017, 71, 117.	0.6	5
22	A Bayesian geostatistical approach to modeling global distributions of Lygodium microphyllum under projected climate warming. Ecological Modelling, 2017, 363, 192-206.	2.5	16
23	Graphical Inference in Geographical Research. Geographical Analysis, 2016, 48, 115-131.	3.5	4
24	Remote sensing of species dominance and the value for quantifying ecosystem services. Remote Sensing in Ecology and Conservation, 2016, 2, 141-151.	4.3	13
25	Climate Change and Food Systems Research: Current Trends and Future Directions. Geography Compass, 2016, 10, 414-428.	2.7	9
26	Root biomass and soil δ13C in C3 and C4 grasslands along a precipitation gradient. Plant Ecology, 2015, 216, 615-627.	1.6	21
27	Land surface skin temperature captures thermal environments of <scp><scp>C₃</scp></scp> and <scp><scp>C₄</scp> grasses. Global Ecology and Biogeography, 2014, 23, 286-296.</scp>	5.8	42
28	Prioritizing conservation of tropical dry forests in the Pacific. Oryx, 2014, 48, 337-344.	1.0	18
29	Phenology and Productivity of C3 and C4 Grasslands in Hawaii. PLoS ONE, 2014, 9, e107396.	2.5	16
30	Origins of C ₄ Grasslands: Integrating Modeling and Paleo Data to Shed Light on Neogene Vegetation Change. The Paleontological Society Special Publications, 2014, 13, 135-136.	0.0	0
31	Phylogenetic conservatism in plant phenology. Journal of Ecology, 2013, 101, 1520-1530.	4.0	182
32	Clouds and temperature drive dynamic changes in tropical flower production. Nature Climate Change, 2013, 3, 838-842.	18.8	63
33	Scaling species richness and endemism of tropical dry forests on oceanic islands. Diversity and Distributions, 2013, 19, 896-906.	4.1	24
34	Improving our understanding of environmental controls on the distribution of C ₃ and C ₄ grasses. Global Change Biology, 2013, 19, 184-196.	9.5	61
35	Modelling the potential distribution of endangered, endemic Hibiscus brackenridgei on Oahu to assess the impacts of climate change and prioritize conservation efforts Pacific Conservation Biology, 2013, 19, 156.	1.0	6
36	A Global Assessment of Long-Term Greening and Browning Trends in Pasture Lands Using the GIMMS LAI3g Dataset. Remote Sensing, 2013, 5, 2492-2512.	4.0	35

Stephanie Pau

#	Article	IF	CITATIONS
37	The rarest and least protected forests in biodiversity hotspots. Biodiversity and Conservation, 2012, 21, 3597-3611.	2.6	85
38	Phenological tracking enables positive species responses to climate change. Ecology, 2012, 93, 1765-1771.	3.2	260
39	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	3.4	107
40	Dissecting NDVI–species richness relationships in Hawaiian dry forests. Journal of Biogeography, 2012, 39, 1678-1686.	3.0	44
41	Floristic Composition and Natural History Characteristics of Dry Forests in the Pacific. Pacific Science, 2011, 65, 127-141.	0.6	18
42	Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17, 3633-3643.	9.5	314
43	Asynchronous Response of Tropical Forest Leaf Phenology to Seasonal and El Niño-Driven Drought. PLoS ONE, 2010, 5, e11325.	2.5	25
44	Natural history, biogeography, and endangerment of Hawaiian dry forest trees. Biodiversity and Conservation, 2009, 18, 3167-3182.	2.6	35
45	Nonâ€Native Plant Invasion of the Hawaiian Islands. Geography Compass, 2008, 2, 1241-1265.	2.7	7