
Prakash Radhakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ImmunoPET of Ovarian and Pancreatic Cancer with AR9.6, a Novel MUC16-Targeted Therapeutic Antibody. Clinical Cancer Research, 2022, 28, 948-959.	3.2	11
2	Insect cell expression and purification of recombinant <scp>SARSâ€COV</scp> â€2 spike proteins that demonstrate <scp>ACE2</scp> binding. Protein Science, 2022, 31, e4300.	3.1	5
3	Small-molecule IKKÎ ² activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115071119.	3.3	3
4	Structure of a Therapeutic Antibody in Complex with MUC16 Reveals a Conformational Epitope Influenced by Antigen Glycosylation. FASEB Journal, 2022, 36, .	0.2	0
5	Truncated O-Glycan-Bearing MUC16 Enhances Pancreatic Cancer Cells Aggressiveness via α4β1 Integrin Complexes and FAK Signaling. International Journal of Molecular Sciences, 2022, 23, 5459.	1.8	8
6	Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188464.	3.3	128
7	Bromelain inhibits SARSâ€CoVâ€2 infection via targeting ACEâ€2, TMPRSS2, and spike protein. Clinical and Translational Medicine, 2021, 11, e281.	1.7	18
8	lsoforms of MUC16 activate oncogenic signaling through EGF receptors to enhance the progression of pancreatic cancer. Molecular Therapy, 2021, 29, 1557-1571.	3.7	25
9	Inhibition of the Receptor for Advanced Glycation End Products Enhances the Cytotoxic Effect of Gemcitabine in Murine Pancreatic Tumors. Biomolecules, 2021, 11, 526.	1.8	6
10	MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic cancer cells expressing cancer-associated short O-glycans. Cancer Letters, 2021, 503, 91-102.	3.2	24
11	Structure activity relationship (SAR) study identifies a quinoxaline urea analog that modulates IKKβ phosphorylation for pancreatic cancer therapy. European Journal of Medicinal Chemistry, 2021, 222, 113579.	2.6	9
12	lgE-Based Therapeutic Combination Enhances Antitumor Response in Preclinical Models of Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 2457-2468.	1.9	2
13	Role of Tumor and Stroma-Derived IGF/IGFBPs in Pancreatic Cancer. Cancers, 2020, 12, 1228.	1.7	12
14	Development of a MUC16-Targeted Near-Infrared Fluorescent Antibody Conjugate for Intraoperative Imaging of Pancreatic Cancer. Molecular Cancer Therapeutics, 2020, 19, 1670-1681.	1.9	8
15	Invasive phenotype induced by low extracellular pH requires mitochondria dependent metabolic flexibility. Biochemical and Biophysical Research Communications, 2020, 525, 162-168.	1.0	9
16	Pancreatic Stellate Cells: The Key Orchestrator of The Pancreatic Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1234, 57-70.	0.8	21
17	Truncated Oâ€glycans promote epithelialâ€ŧoâ€mesenchymal transition and stemness properties of pancreatic cancer cells. Journal of Cellular and Molecular Medicine, 2019, 23, 6885-6896.	1.6	30
18	The glycoprotein mucinâ€1 negatively regulates GalNAc transferase 5 expression in pancreatic cancer. FEBS Letters, 2019, 593, 2751-2761.	1.3	8

#	Article	IF	CITATIONS
19	Role of keratan sulfate expression in human pancreatic cancer malignancy. Scientific Reports, 2019, 9, 9665.	1.6	15
20	A Polymeric Nanogel-Based Treatment Regimen for Enhanced Efficacy and Sequential Administration of Synergistic Drug Combination in Pancreatic Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 894-901.	1.3	16
21	Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Molecular Cancer, 2019, 18, 14.	7.9	266
22	Combination of RAGE Inhibitors and Gemcitabine Impedes Tumor Growth by Reducing Autophagy and Facilitating Apoptosis in Pancreatic Cancer. FASEB Journal, 2019, 33, 674.19.	0.2	2
23	RAGE inhibitors and gemcitabine: an effective combination to attenuate pancreatic cancer. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-10-14.	0.0	0
24	Combination of RAGE inhibitors and gemcitabine to mitigate chemoâ€resistance in pancreatic cancer. FASEB Journal, 2018, 32, 835.7.	0.2	1
25	Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2016, 59, 5121-5127.	2.9	86
26	Amyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis. Oncotarget, 2015, 6, 2064-2075.	0.8	26
27	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proceedings of the United States of America, 2014, 111, E4066-75.	3.3	251
28	Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer & Metabolism, 2014, 2, 18.	2.4	182
29	Interactions between MUC1 and p120 Catenin Regulate Dynamic Features of Cell Adhesion, Motility, and Metastasis. Cancer Research, 2014, 74, 1609-1620.	0.4	25
30	Targeting the NF-κB and mTOR Pathways with a Quinoxaline Urea Analog That Inhibits IKKβ for Pancreas Cancer Therapy. Clinical Cancer Research, 2013, 19, 2025-2035.	3.2	27
31	Novel Treatment for Mantle Cell Lymphoma Including Therapy-Resistant Tumor by NF-κB and mTOR Dual-Targeting Approach. Molecular Cancer Therapeutics, 2013, 12, 2006-2017.	1.9	27
32	Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis. International Journal of Cancer, 2013, 133, 2824-2833.	2.3	28
33	MUC1 Regulates Expression of Multiple microRNAs Involved in Pancreatic Tumor Progression, Including the miR-200c/141 Cluster. PLoS ONE, 2013, 8, e73306.	1.1	32
34	MicroRNA-200c Modulates the Expression of MUC4 and MUC16 by Directly Targeting Their Coding Sequences in Human Pancreatic Cancer. PLoS ONE, 2013, 8, e73356.	1.1	38
35	Truncated O ―glycans Enhance Tumorigenicity of Pancreatic Tumors. FASEB Journal, 2013, 27, 592.7.	0.2	0
36	MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13787-13792.	3.3	207

#	Article	IF	CITATIONS
37	Novel Treatment for Therapy-Resistant Mantle Cell Lymphoma Targeting NF-κB and mTOR Signaling Pathways in Vitro and in Vivo. Blood, 2012, 120, 63-63.	0.6	4
38	TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands. Biochemical and Biophysical Research Communications, 2011, 409, 436-441.	1.0	44
39	Elevated expression of L-selectin ligand in lymph node-derived human prostate cancer cells correlates with increased tumorigenicity. Glycoconjugate Journal, 2009, 26, 75-81.	1.4	10
40	Cell type-specific activation of the cytomegalovirus promoter by dimethylsulfoxide and 5-Aza-2'-deoxycytidine. International Journal of Biochemistry and Cell Biology, 2008, 40, 1944-1955.	1.2	15
41	Butyrate induces sLex synthesis by stimulation of selective glycosyltransferase genes. Biochemical and Biophysical Research Communications, 2007, 359, 457-462.	1.0	13