
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1501652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid proteolysis of gluten-derived immunogenic peptides in bread by actinidin in a combined <i>in vivo</i> and <i>in vitro</i> oro-gastrointestinal digestion model. Food and Function, 2022, , .	4.6	Ο
2	Actinidin reduces gluten-derived immunogenic peptides reaching the small intestine in an in vitro semi-dynamic gastrointestinal tract digestion model. Food Research International, 2022, 159, 111560.	6.2	1
3	The kiwifruit enzyme actinidin enhances the hydrolysis of gluten proteins during simulated gastrointestinal digestion. Food Chemistry, 2021, 341, 128239.	8.2	13
4	Shockwave processing of beef brisket in conjunction with sous vide cooking: Effects on protein structural characteristics and muscle microstructure. Food Chemistry, 2021, 343, 128500.	8.2	18
5	Effects of Pulsed Electric Field Processing and Sous Vide Cooking on Muscle Structure and In Vitro Protein Digestibility of Beef Brisket. Foods, 2021, 10, 512.	4.3	18
6	Endogenous Proteolytic Systems and Meat Tenderness: Influence of Post-Mortem Storage and Processing. Food Science of Animal Resources, 2021, 41, 589-607.	4.1	19
7	8th International symposium on delivery of functionality in complex food systems (DOF 2019). Food and Function, 2020, 11, 9316-9316.	4.6	Ο
8	Effects of Ultrasound Treatments on Tenderness and In Vitro Protein Digestibility of New Zealand Abalone, Haliotis iris. Foods, 2020, 9, 1122.	4.3	14
9	Effects of drying and storage on milk proteins. , 2020, , 423-466.		2
10	World supply of food and the role of dairy protein. , 2020, , 1-19.		4
11	Posttranslational modifications of caseins. , 2020, , 173-211.		3
12	Milk proteins: The future. , 2020, , 715-730.		3
13	Changes in Cathepsin Activity during Low-Temperature Storage and Sous Vide Processing of Beef Brisket. Food Science of Animal Resources, 2020, 40, 415-425.	4.1	27
14	Muscle Proteins. , 2019, , 164-179.		14
15	Modern Technologies for Personalized Nutrition. , 2019, , 195-222.		10
16	eNutrition - The next dimension for eHealth?. Trends in Food Science and Technology, 2019, 91, 634-639.	15.1	8
17	Possibility of minimizing gluten intolerance by co-consumption of some fruits – A case for positive food synergy?. Trends in Food Science and Technology, 2019, 94, 91-97.	15.1	12
18	Effect of Pulsed Electric Fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis. LWT - Food Science and Technology, 2019, 103, 253-259.	5.2	48

#	Article	IF	CITATIONS
19	'The Rate at Which Digested Protein Enters the Small Intestine Modulates the Rate of Amino Acid Digestibility throughout the Small Intestine of Growing Pigs. Journal of Nutrition, 2018, 148, 1743-1750.	2.9	17
20	Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility. Meat Science, 2018, 145, 256-265.	5.5	56
21	Thermal inactivation of actinidin as affected by meat matrix. Meat Science, 2018, 145, 238-244.	5.5	7
22	High pressure processing of meat: effects on ultrastructure and protein digestibility. Food and Function, 2016, 7, 2389-2397.	4.6	60
23	Human digestion–Âa processing perspective. Journal of the Science of Food and Agriculture, 2016, 96, 2275-2283.	3.5	68
24	Cotyledon Cell Structure and In Vitro Starch Digestion in Navy Beans. , 2014, , 223-242.		2
25	Changes in Milk Proteins during Storage of Dry Powders. , 2014, , 343-357.		1
26	Actinidin from kiwifruit (<i>Actinidia deliciosa</i> cv. Hayward) increases the digestion and rate of gastric emptying of meat proteins in the growing pig. British Journal of Nutrition, 2014, 111, 957-967.	2.3	45
27	Differentiating aspects of product innovation processes in the food industry. British Food Journal, 2014, 116, 1346-1368.	2.9	15
28	Applying Structuring Approaches for Satiety. , 2014, , 363-388.		3
29	Post-translational Modifications of Caseins. , 2014, , 141-168.		7
30	Dietary Actinidin from Kiwifruit (Actinidia deliciosa cv. Hayward) Increases Gastric Digestion and the Gastric Emptying Rate of Several Dietary Proteins in Growing Rats. Journal of Nutrition, 2014, 144, 440-446.	2.9	32
31	Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries. LWT - Food Science and Technology, 2014, 55, 612-620.	5.2	108
32	The World Supply of Food and the Role of Dairy Protein. , 2014, , 1-18.		0
33	Milk Proteins: The Future. , 2014, , 571-583.		4
34	The future supply of animal-derived protein for human consumption. Trends in Food Science and Technology, 2013, 29, 62-73.	15.1	363
35	Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter, 2013, 9, 3147.	2.7	81
36	Preface. Advances in Food and Nutrition Research, 2013, 68, xv-xvii.	3.0	1

#	Article	IF	CITATIONS
37	Influence of Kiwifruit on Protein Digestion. Advances in Food and Nutrition Research, 2013, 68, 149-167.	3.0	18
38	Kiwifruit Proteins and Enzymes. Advances in Food and Nutrition Research, 2013, 68, 59-80.	3.0	43
39	Actinidain. , 2013, , 1879-1884.		1
40	PFMFind: A System for Discovery of Peptide Homology and Function. Lecture Notes in Computer Science, 2013, 8199`, 319-324.	1.3	1
41	Digestible nutrients and available (ATP) energy contents of two varieties of kiwifruit (Actinidia) Tj ETQq1 1 0.784	314 rgBT 8.2	/Oyerlock 10
42	The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydrate Polymers, 2012, 87, 1678-1688.	10.2	110
43	Green kiwifruit modulates the colonic microbiota in growing pigs. Letters in Applied Microbiology, 2011, 52, 379-385.	2.2	43
44	Effect of actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) on the digestion of food proteins determined in the growing rat. Food Chemistry, 2011, 129, 1681-1689.	8.2	43
45	†Designer' milks: functional foods from milk. , 2010, , 74-93.		2
46	Actinidin Enhances Protein Digestion in the Small Intestine As Assessed Using an in Vitro Digestion Model. Journal of Agricultural and Food Chemistry, 2010, 58, 5074-5080.	5.2	60
47	Actinidin Enhances Gastric Protein Digestion As Assessed Using an in Vitro Gastric Digestion Model. Journal of Agricultural and Food Chemistry, 2010, 58, 5068-5073.	5.2	74
48	The In Vitro Anti-pathogenic Activity of Immunoglobulin Concentrates Extracted from Ovine Blood. Applied Biochemistry and Biotechnology, 2009, 157, 442-452.	2.9	14
49	Milk proteins: the future. , 2008, , 501-511.		0
50	Changes in milk proteins during storage of dry powders. , 2008, , 307-320.		2
51	Innovation in the food industry: Personalised nutrition and mass customisation. Innovation: Management, Policy and Practice, 2008, 10, 53-60.	3.9	31
52	Relationship Between the Pasting Behaviour and the Phosphorus Content of Different Potato Starches. Starch/Staerke, 2007, 59, 149-155.	2.1	23
53	Mass customisation of food. Journal of the Science of Food and Agriculture, 2006, 86, 7-9.	3.5	12
54	Some Rheological Properties of Sodium Caseinateâ	5.2	47

#	Article	IF	CITATIONS
55	A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. Journal of Dairy Research, 2004, 71, 51-57.	1.4	131
56	Heat-Induced Redistribution of Disulfide Bonds in Milk Proteins. 2. Disulfide Bonding Patterns between Bovine β-Lactoglobulin and β-Casein. Journal of Agricultural and Food Chemistry, 2004, 52, 7669-7680.	5.2	68
57	Heat-Induced Redistribution of Disulfide Bonds in Milk Proteins. 1. Bovine β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52, 7660-7668.	5.2	105
58	Milk and Dairy Products in the 21st Century Prepared for the 50th Anniversary of the Journal of Agricultural and Food Chemistry. Journal of Agricultural and Food Chemistry, 2002, 50, 7187-7193.	5.2	23
59	Milk protein structure—what can it tell the dairy industry?. International Dairy Journal, 2002, 12, 299-310.	3.0	33
60	Title is missing!. International Dairy Journal, 2002, 12, 297.	3.0	1
61	Aqueous Two-Phase Extraction and Purification of Animal Proteins. Molecular Biotechnology, 2002, 20, 085-094.	2.4	13
62	Designer milks for the new millennium. Livestock Science, 2001, 72, 99-109.	1.2	38
63	Effect of genetic polymorphism on the gelation of βâ€lactoglobulin. Macromolecular Symposia, 1999, 140, 137-143.	0.7	1
64	Extractive purification of enzymes from animal tissue using aqueous two phase systems: pilot scale studies. Journal of Biotechnology, 1991, 19, 19-33.	3.8	36
65	An Independent Pilot-Scale Fermentation Facility for Recombinant Microorganisms. Annals of the New York Academy of Sciences, 1991, 646, 378-380.	3.8	1
66	The Ureides. , 1990, , 197-282.		18
67	Extractive purification of enzymes from animal tissue using aqueous phase systems. Journal of Biotechnology, 1989, 11, 337-352.	3.8	19
68	Mg2+ adenosine triphosphatase from cell envelopes of free-living and bacteroid forms of Rhizobium lupini strain NZP2257. Archives of Biochemistry and Biophysics, 1984, 232, 337-347.	3.0	2
69	Uricase from soybean root nodules: Purification, properties, and comparison with the enzyme from cowpea. Archives of Biochemistry and Biophysics, 1983, 226, 190-197.	3.0	37
70	Biosynthesis of purines by a proplastid fraction from soybean nodules. Archives of Biochemistry and Biophysics, 1983, 220, 179-187.	3.0	44
71	Soybean nodule xanthine dehydrogenase: A kinetic study. Archives of Biochemistry and Biophysics, 1983, 222, 435-441.	3.0	24
72	Phosphoglycerate Dehydrogenase from Soybean Nodules. Plant Physiology, 1983, 71, 658-661.	4.8	15

#	Article	IF	CITATIONS
73	Enzymes of Amide and Ureide Biogenesis in Developing Soybean Nodules. Plant Physiology, 1982, 69, 1334-1338.	4.8	68
74	Ureide biogenesis in leguminous plants. Trends in Biochemical Sciences, 1982, 7, 366-368.	7.5	45
75	Purification and properties of glutamine synthetase from the plant cytosol fraction of lupin nodules. Archives of Biochemistry and Biophysics, 1982, 218, 561-571.	3.0	24
76	Purine biosynthesis and catabolism in soybean root nodules: Incorporation of 14C from 14CO2 into xanthine. Archives of Biochemistry and Biophysics, 1982, 213, 486-491.	3.0	39
77	Subcellular organization of ureide biogenesis from glycolytic intermediates and ammonium in nitrogen-fixing soybean nodules. Planta, 1982, 155, 45-51.	3.2	94
78	Enzymes of ammonia assimilation in legume nodules: A comparison between ureide- and amide-transporting plants. Physiologia Plantarum, 1982, 55, 255-260.	5.2	53
79	Enzymes of nitrogen metabolism in legume nodules: Partial purification and properties of the aspartate aminotransferases from lupine nodules. Archives of Biochemistry and Biophysics, 1981, 209, 524-533.	3.0	50
80	Glutamate synthase (NADH) from lupin nodules. Specificity of the 2-oxoglutarate site. Biochimica Et Biophysica Acta - Biomembranes, 1981, 657, 539-542.	2.6	4
81	Mechanism of action of chalcone isomerase. Bioorganic Chemistry, 1979, 8, 1-8.	4.1	16
82	Kinetic Mechanism of NADH-Dependent Clutamate Synthase from Lupin Nodules. FEBS Journal, 1979, 99, 531-539.	0.2	12
83	Stereospecificity and NADH-H2O hydrogen exchange of NADH-dependent glutamate synthase from lupin nodules. FEBS Letters, 1979, 108, 237-239.	2.8	3
84	Enzymes of Nitrogen Metabolism in Legume Nodules: a Comparative Study. Functional Plant Biology, 1978, 5, 553.	2.1	46
85	Enzymes of Nitrogen Metabolism in Legume Nodules. Purification and Properties of NADH-Dependent Glutamate Synthase from Lupin Nodules. FEBS Journal, 1977, 79, 355-362.	0.2	97
86	Purification and Kinetic Properties of Chalcone-Flavanone Isomerase from Soya Bean. FEBS Journal, 1975, 50, 383-389.	0.2	63
87	Rate enhancement by catalytic groups in enzymes. Imidazole catalysis of the hydrolysis of N,O-diacetylserinamide as a model for general base catalysis in chymotrypsin. Bioorganic Chemistry, 1974, 3, 213-220.	4.1	4
88	The Actinidin-Catalysed Hydrolysis of N-alpha-Benzyloxycarbonyl-l-lysine p-Nitrophenyl Ester. pH Dependence and Mechanism. FEBS Journal, 1973, 36, 575-582.	0.2	20
89	Kinetic studies on the thiol protease fromActinidia chinensis. FEBS Letters, 1972, 27, 282-284.	2.8	65
90	Transport of phosphate from leaves to leguminous root nodules. Plant and Soil, 1971, 35, 651-653.	3.7	4