Pavel A Slepukhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1501082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescent mesoionic 1-(2-aryl-4H-thieno[3,4-d][1,2,3]triazol-2-ium-4-ylidene)ethan-1-olates: One-pot synthesis, photophysics, and biological behavior. Dyes and Pigments, 2022, 199, 109777.	3.7	2
2	Multicomponent Domino Reactions for the Synthesis of Variable Hydrogenated Imidazo[1,2â€ <i>a</i>]pyridines. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	5
3	Copper(<scp>ii</scp>) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Advances, 2022, 12, 8841-8851.	3.6	21
4	New multicomponent approach to polyfluoroalkylated pyrido[1,2-a]pyrimidine derivatives and bis-cyclohexenones. Journal of Fluorine Chemistry, 2021, 241, 109686.	1.7	10
5	Design, synthesis, and photophysics of bi- and tricyclic fused pyrazolines. New Journal of Chemistry, 2021, 45, 6315-6326.	2.8	1
6	The Rh(<scp>iii</scp>)-catalysed C–H/N–H annulation of 2-thienyl- and 2-phenyl-quinazolin-4(3 <i>H</i>)-ones with diphenylacetylene. New Journal of Chemistry, 2021, 45, 8456-8466.	2.8	2
7	Electrochemical Aromatization of Dihydroazines: Effect of ChalcoÂgenophosphoryl (CGP) Substituents on Anodic Oxidation of 9-CGP-9,10-dihydroacridine. Synthesis, 2021, 53, 3791-3798.	2.3	2
8	Photophysics, photochemistry and bioimaging application of 8-azapurine derivatives. Organic and Biomolecular Chemistry, 2021, 19, 9880-9896.	2.8	2
9	New heteroanalogs of tricyclic ascidian alkaloids: synthesis and biological activity. Organic and Biomolecular Chemistry, 2021, 19, 9925-9935.	2.8	5
10	Synthesis and Photophysical Studies of Novel Vâ€Shaped 2,3â€Bis{5â€arylâ€2â€ŧhienyl}(dibenzo[<i>f,h</i>])quinoxalines. Asian Journal of Organic Chemistry, 2020, 9, 673-681.	2.7	5
11	Competitive ways for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and amino alcohols. Pure and Applied Chemistry, 2020, 92, 1265-1275.	1.9	10
12	Lithium benzenechromiumtricarbonyl as C-nucleophile in the cross-dehydrogenative coupling reactions of azaaromatics. Inorganica Chimica Acta, 2019, 487, 339-344.	2.4	2
13	SYNTHESIS AND ANTITUBERCULAR EVALUATION OF FLUORINATED 2-CYCLOALKYLIMINO SUBSTITUTED 1,3-BENZOTHIAZIN-4-ONES. Journal of Fluorine Chemistry, 2019, 220, 69-77.	1.7	9
14	Autocatalyzed three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and alkyl amines: a novel approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. Organic and Biomolecular Chemistry, 2019, 17, 4273-4280.	2.8	11
15	Synthesis and photophysical studies of novel 2-[5-(4-diethylaminophenyl)thiophen-2-yl]quinazoline derivatives. Mendeleev Communications, 2018, 28, 14-16.	1.6	9
16	Pot, Atom, Step Economic (PASE) Approach towards (<i>Aza</i>)â€2,2′â€Bipyridines: Synthesis and Photophysical Studies. ChemistrySelect, 2018, 3, 340-347.	1.5	9
17	Highlights on the Road towards Highly Emitting Solidâ€State Luminophores: Two Classes of Thiazoleâ€Based Organoboron Fluorophores with the AIEE/AIE Effect. Chemistry - an Asian Journal, 2018, 13, 311-324.	3.3	24
18	An effective and facile synthesis of new blue fluorophores on the basis of an 8-azapurine core. Organic and Biomolecular Chemistry, 2018, 16, 9420-9429.	2.8	11

PAVEL A SLEPUKHIN

#	Article	IF	CITATIONS
19	Fluorescent boron complexes based on new <i>N</i> , <i>O</i> -chelates as promising candidates for flow cytometry. Organic and Biomolecular Chemistry, 2018, 16, 5150-5162.	2.8	20
20	Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New Journal of Chemistry, 2017, 41, 2309-2320.	2.8	29
21	Synthesis and Fluorescent Behaviour of 2-Aryl-4,5-dihydro-1 <i>H</i> -1,2,4-triazoles. Journal of Organic Chemistry, 2017, 82, 86-100.	3.2	13
22	2-Aryl-5-amino-1,2,3-triazoles: New effective blue-emitting fluorophores. Dyes and Pigments, 2017, 136, 229-242.	3.7	27
23	Synthesis of 2â€Arylâ€1,2,3â€triazoles by Oxidative Cyclization of 2â€(Arylazo)etheneâ€1,1â€diamines: A Oneâ€ Approach. European Journal of Organic Chemistry, 2016, 2016, 2700-2710.	Pot 2.4	21
24	Synthesis and Photophysical Studies of 2â€(Thiophenâ€2â€yl)â€4â€(morpholinâ€4â€yl)quinazoline Derivatives. European Journal of Organic Chemistry, 2016, 2016, 2876-2881.	2.4	20
25	Cyclometallated PTII complexes of 2-(2-thienyl)-4-(cycloalkylimino)-substituted quinazolines. Mendeleev Communications, 2016, 26, 129-130.	1.6	9
26	Threeâ€Component Synthesis of 7â€Hydroxyâ€7â€polyfluoroalkylhexahydroimidazo[1,2â€ <i>a</i>]Âpyridinâ€5(1 <i>H</i>)â€ones. European Journ Organic Chemistry, 2015, 2015, 6306-6314.	n al. of	18
27	New Approach to the Synthesis of Azinylcymantrenes. Organometallics, 2011, 30, 3047-3053.	2.3	21
28	From 1,2,4-triazines towards substituted pyridines and their cyclometallated Pt complexes. Tetrahedron Letters, 2008, 49, 4096-4098.	1.4	42