Matthew D Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1500931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acellular Nerve Allografts in Major Peripheral Nerve Repairs: An Analysis of Cases Presenting With Limited Recovery. Hand, 2023, 18, 236-243.	1.2	14
2	Beyond the Cubital Tunnel: Use of Adjunctive Procedures in the Management of Cubital Tunnel Syndrome. Hand, 2023, 18, 203-213.	1.2	8
3	Adipose Tissue in Lymphedema: A Central Feature of Pathology and Target for Pharmacologic Therapy. Lymphatic Research and Biology, 2023, 21, 2-7.	1.1	3
4	Lidocaine Nerve Block Diminishes the Effects of Therapeutic Electrical Stimulation to Enhance Nerve Regeneration in Rats. Hand, 2023, 18, 119S-125S.	1.2	2
5	Incidence of Nerve Injury After Extremity Trauma in the United States. Hand, 2022, 17, 615-623.	1.2	44
6	The Effects of Intraoperative Electrical Stimulation on Regeneration and Recovery After Nerve Isograft Repair in a Rat Model. Hand, 2022, 17, 540-548.	1.2	9
7	IL-4 expressing cells are recruited to nerve after injury and promote regeneration. Experimental Neurology, 2022, 347, 113909.	4.1	20
8	Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plastic and Reconstructive Surgery, 2022, 149, 681e-690e.	1.4	17
9	Neuroma Management: Capping Nerve Injuries With an Acellular Nerve Allograft Can Limit Axon Regeneration. Hand, 2021, 16, 157-163.	1.2	19
10	Liposomes embedded within fibrin gels facilitate localized macrophage manipulations within nerve. Journal of Neuroscience Methods, 2021, 348, 108981.	2.5	4
11	The Role of the IL-4 Signaling Pathway in Traumatic Nerve Injuries. Neurorehabilitation and Neural Repair, 2021, 35, 431-443.	2.9	15
12	Telomere erosion in human pluripotent stem cells leads to ATR-mediated mitotic catastrophe. Journal of Cell Biology, 2021, 220, .	5.2	6
13	Editorial Commentary of "Nerve Reconstruction Using Processed Nerve Allograft in the US Military― Military Medicine, 2021, 186, 148-151.	0.8	1
14	Long Acellular Nerve Allografts Cap Transected Nerve to Arrest Axon Regeneration and Alter Upstream Gene Expression in a Rat Neuroma Model. Plastic and Reconstructive Surgery, 2021, 148, 32e-41e.	1.4	10
15	Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. Journal of Bone and Joint Surgery - Series A, 2021, 103, e80.	3.0	10
16	Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Molecular Cell, 2021, 81, 4026-4040.e8.	9.7	87
17	PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells. Molecular Cell, 2020, 77, 461-474.e9.	9.7	148
18	Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle and Nerve, 2020. 61. 726-739.	2.2	73

MATTHEW D WOOD

#	Article	IF	CITATIONS
19	TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. Journal of Cell Science, 2020, 133, .	2.0	35
20	Discussion: Functional Outcome after Reconstruction of a Long Nerve Gap in Rabbits Using Optimized Decellularized Nerve Allografts. Plastic and Reconstructive Surgery, 2020, 145, 1451-1453.	1.4	1
21	New in vitro highly cytotoxic platinum and palladium cyanoximates with minimal side effects in vivo. Journal of Inorganic Biochemistry, 2020, 208, 111082.	3.5	5
22	Video-based Learning in Surgery. Annals of Surgery, 2020, 272, 1012-1019.	4.2	20
23	Macrophage-Derived Vascular Endothelial Growth Factor-A Is Integral to Neuromuscular Junction Reinnervation after Nerve Injury. Journal of Neuroscience, 2020, 40, 9602-9616.	3.6	28
24	T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects. Acta Biomaterialia, 2020, 112, 149-163.	8.3	16
25	The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration. Experimental Neurology, 2020, 331, 113363.	4.1	28
26	Design-Based stereology and binary image histomorphometry in nerve assessment. Journal of Neuroscience Methods, 2020, 336, 108635.	2.5	13
27	Comparing electrical stimulation and tacrolimus (FK506) to enhance treating nerve injuries. Muscle and Nerve, 2019, 60, 629-636.	2.2	24
28	Imaging in the repair of peripheral nerve injury. Nanomedicine, 2019, 14, 2659-2677.	3.3	19
29	The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Experimental Neurology, 2019, 318, 216-231.	4.1	39
30	Detecting inflammatory responses in live animal models with near-infrared ROS probes. , 2019, , .		0
31	Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts. Muscle and Nerve, 2018, 57, 260-267.	2.2	16
32	Increasing Nerve Autograft Length Increases Senescence and Reduces Regeneration. Plastic and Reconstructive Surgery, 2018, 142, 952-961.	1.4	50
33	A microfluidic platform to study the effects of GDNF on neuronal axon entrapment. Journal of Neuroscience Methods, 2018, 308, 183-191.	2.5	9
34	Viral Transduction of Primary Schwann Cells Using a Cre-Lox System to Regulate Glial Cell Line-Derived Neurotrophic Factor Expression. , 2018, , 327-344.		0
35	Hyaluronic acid/carboxymethyl cellulose directly applied to transected nerve decreases axonal outgrowth. , 2017, 105, 568-574.		14
36	Transgenic SCs expressing GDNFâ€IRESâ€DsRed impair nerve regeneration within acellular nerve allografts. Biotechnology and Bioengineering, 2017, 114, 2121-2130.	3.3	13

MATTHEW D WOOD

#	Article	IF	CITATIONS
37	Selective Nerve Root Transection in the Rat Produces Permanent, Partial Nerve Injury Models with Variable Levels of Functional Deficit. Plastic and Reconstructive Surgery, 2017, 139, 94-103.	1.4	4
38	An engineered biocompatible drug delivery system enhances nerve regeneration after delayed repair. Journal of Biomedical Materials Research - Part A, 2016, 104, 367-376.	4.0	27
39	Vascularization is delayed in long nerve constructs compared with nerve grafts. Muscle and Nerve, 2016, 54, 319-321.	2.2	27
40	Imaging of radicals following injury or acute stress in peripheral nerves with activatable fluorescent probes. Free Radical Biology and Medicine, 2016, 101, 85-92.	2.9	9
41	Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts. Tissue Engineering - Part A, 2016, 22, 949-961.	3.1	66
42	Robust Axonal Regeneration in a Mouse Vascularized Composite Allotransplant Model Undergoing Delayed Tissue Rejection. Hand, 2016, 11, 456-463.	1.2	15
43	The Effect of Short Nerve Grafts in Series on Axonal Regeneration Across Isografts or Acellular Nerve Allografts. Journal of Hand Surgery, 2016, 41, e113-e121.	1.6	17
44	A glial cell line-derived neurotrophic factor delivery system enhances nerve regeneration across acellular nerve allografts. Acta Biomaterialia, 2016, 29, 62-70.	8.3	59
45	Enhancement of Facial Nerve Motoneuron Regeneration through Cross-Face Nerve Grafts by Adding End-to-Side Sensory Axons. Plastic and Reconstructive Surgery, 2015, 135, 460-471.	1.4	55
46	Macroscopic In Vivo Imaging of Facial Nerve Regeneration in <i>Thy1</i> - <i>GFP</i> Rats. JAMA Facial Plastic Surgery, 2015, 17, 8-15.	2.1	21
47	Pathways regulating modality-specific axonal regeneration in peripheral nerve. Experimental Neurology, 2015, 265, 171-175.	4.1	62
48	Comparison of Acellular Nerve Allograft Modification with Schwann Cells or VEGF. Hand, 2015, 10, 396-402.	1.2	45
49	Characterization of Neuronal Death and Functional Deficits following Nerve Injury during the Early Postnatal Developmental Period in Rats. Developmental Neuroscience, 2015, 37, 66-77.	2.0	14
50	A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits. Biomaterials, 2015, 72, 112-124.	11.4	38
51	Finely Tuned Temporal and Spatial Delivery of GDNF Promotes Enhanced Nerve Regeneration in a Long Nerve Defect Model. Tissue Engineering - Part A, 2015, 21, 2852-2864.	3.1	59
52	Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. Neuroscience, 2015, 284, 202-216.	2.3	41
53	Viral transduction of primary Schwann cells using a Creâ€lox system to regulate GDNF expression. Biotechnology and Bioengineering, 2014, 111, 1886-1894.	3.3	12
54	Returning What is Lost: Schwann Cell Versus VEGF Addition to Acellular Nerve Allografts. Journal of Hand Surgery, 2014, 39, e12-e13.	1.6	1

MATTHEW D WOOD

#	Article	IF	CITATIONS
55	The ErbB2 inhibitor Herceptin (Trastuzumab) promotes axonal outgrowth four weeks after acute nerve transection and repair. Neuroscience Letters, 2014, 582, 81-86.	2.1	10
56	Ratâ€derived processed nerve allografts support more axon regeneration in rat than humanâ€derived processed nerve xenografts. Journal of Biomedical Materials Research - Part A, 2014, 102, 1085-1091.	4.0	21
57	Tissue engineered constructs for peripheral nerve surgery. European Surgery - Acta Chirurgica Austriaca, 2013, 45, 122-135.	0.7	41
58	Experimental and Clinical Evidence for Use of Decellularized Nerve Allografts in Peripheral Nerve Gap Reconstruction. Tissue Engineering - Part B: Reviews, 2013, 19, 83-96.	4.8	94
59	Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Experimental Neurology, 2013, 247, 165-177.	4.1	167
60	Fibrin gels containing GDNF microspheres increase axonal regeneration after delayed peripheral nerve repair. Regenerative Medicine, 2013, 8, 27-37.	1.7	54
61	Functional motor recovery is improved due to local placement of GDNF microspheres after delayed nerve repair. Biotechnology and Bioengineering, 2013, 110, 1272-1281.	3.3	30
62	Functional recovery following peripheral nerve injury in the transgenic <i>Thy1</i> â€ <scp>GFP</scp> rat. Journal of the Peripheral Nervous System, 2013, 18, 220-231.	3.1	26
63	GDNF released from microspheres enhances nerve regeneration after delayed repair. Muscle and Nerve, 2012, 46, 122-124.	2.2	34
64	Differential gene expression in motor and sensory Schwann cells in the rat femoral nerve. Journal of Neuroscience Research, 2012, 90, 96-104.	2.9	52
65	Outcome measures of peripheral nerve regeneration. Annals of Anatomy, 2011, 193, 321-333.	1.9	213
66	Controlled Neurotrophic Factor Delivery To Promote Functional Peripheral Nerve Regeneration. Plastic and Reconstructive Surgery, 2010, 126, 55.	1.4	11
67	Fibrin matrices with affinityâ€based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnology and Bioengineering, 2010, 106, 970-979.	3.3	80
68	Controlled Delivery of Glial Cell Line–Derived Neurotrophic Factor Enhances Motor Nerve Regeneration. Journal of Hand Surgery, 2010, 35, 2008-2017.	1.6	44
69	Heparin-Binding-Affinity-Based Delivery Systems Releasing Nerve Growth Factor Enhance Sciatic Nerve Regeneration. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 771-787.	3.5	52
70	Controlled release of glialâ€derived neurotrophic factor from fibrin matrices containing an affinityâ€based delivery system. Journal of Biomedical Materials Research - Part A, 2009, 89A, 909-918.	4.0	52
71	Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography. Journal of Biomechanics, 2009, 42, 2047-2053.	2.1	32
72	Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomaterialia, 2009, 5, 959-968.	8.3	137

#	ARTICLE	IF	CITATIONS
73	Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements. Journal of Neural Engineering, 2009, 6, 046003.	3.5	45
74	Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinityâ€based delivery systems. Journal of Biomedical Materials Research - Part A, 2008, 84A, 300-312.	4.0	44
75	Short-duration, DC electrical stimulation increases chick embryo DRG neurite outgrowth. Bioelectromagnetics, 2006, 27, 328-331.	1.6	71