Wenxiang Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1500876/wenxiang-zhao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

212
4,137
citations

35
h-index

240
ext. papers

56
g-index

4.7
avg, IF

L-index

#	Paper	IF	Citations
212	Overview of Stator-Permanent Magnet Brushless Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 5087-5101	8.9	485
211	Back-EMF Harmonic Analysis and Fault-Tolerant Control of Flux-Switching Permanent-Magnet Machine With Redundancy. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 1926-1935	8.9	139
210	Design and Analysis of a Linear Permanent- Magnet Vernier Machine With Improved Force Density. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 63, 2072-2082	8.9	103
209	Modeling of a Complementary and Modular Linear Flux-Switching Permanent Magnet Motor for Urban Rail Transit Applications. <i>IEEE Transactions on Energy Conversion</i> , 2012 , 27, 489-497	5.4	102
208	Remedial Injected-Harmonic-Current Operation of Redundant Flux-Switching Permanent-Magnet Motor Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 151-159	8.9	95
207	Design and Analysis of a New Fault-Tolerant Permanent-Magnet Vernier Machine for Electric Vehicles. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 4176-4179	2	84
206	Torque Ripple Suppression in Flux-Switching PM Motor by Harmonic Current Injection Based on Voltage Space-Vector Modulation. <i>IEEE Transactions on Magnetics</i> , 2010 , 46, 1527-1530	2	80
205	Remedial Field-Oriented Control of Five-Phase Fault-Tolerant Permanent-Magnet Motor by Using Reduced-Order Transformation Matrices. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 169-178	8.9	75
204	A Transient Cosimulation Approach to Performance Analysis of Hybrid Excited Doubly Salient Machine Considering Indirect Field-Circuit Coupling. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 2558-256	50 ²	71
203	Comparison of Two SVPWM Control Strategies of Five-Phase Fault-Tolerant Permanent-Magnet Motor. <i>IEEE Transactions on Power Electronics</i> , 2016 , 31, 6621-6630	7.2	69
202	Extension of Virtual-Signal-Injection-Based MTPA Control for Five-Phase IPMSM Into Fault-Tolerant Operation. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 944-955	8.9	68
201	Adaptive Sliding Mode Fault-Tolerant Coordination Control for Four-Wheel Independently Driven Electric Vehicles. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9090-9100	8.9	65
200	. IEEE Transactions on Magnetics, 2013 , 49, 3826-3829	2	64
199	Remedial Brushless AC Operation of Fault-Tolerant Doubly Salient Permanent-Magnet Motor Drives. <i>IEEE Transactions on Industrial Electronics</i> , 2010 , 57, 2134-2141	8.9	62
198	Analysis of Fault-Tolerant Performance of a Doubly Salient Permanent-Magnet Motor Drive Using Transient Cosimulation Method. <i>IEEE Transactions on Industrial Electronics</i> , 2008 , 55, 1739-1748	8.9	61
197	Hybrid Stator Design of Fault-Tolerant Permanent-Magnet Vernier Machines for Direct-Drive Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 179-190	8.9	60
196	Torque Ripple Reduction in Five-Phase IPM Motors by Lowering Interactional MMF. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 8520-8531	8.9	59

(2017-2013)

195	Internal Model Control of Permanent Magnet Synchronous Motor Using Support Vector Machine Generalized Inverse. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 890-898	11.9	59
194	A New Fault-Tolerant Permanent-Magnet Machine for Electric Vehicle Applications. <i>IEEE Transactions on Magnetics</i> , 2011 , 47, 4183-4186	2	53
193	Design and Comparison of Two Fault-Tolerant Interior-Permanent-Magnet Motors. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 6615-6623	8.9	51
192	Comparison of electromagnetic performance of brushless motors having magnets in stator and rotor. <i>Journal of Applied Physics</i> , 2008 , 103, 07F124	2.5	50
191	Multiobjective Optimization of a Double-Side Linear Vernier PM Motor Using Response Surface Method and Differential Evolution. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 80-90	8.9	50
190	Design of Five-Phase Modular Flux-Switching Permanent-Magnet Machines for High Reliability Applications. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3941-3944	2	48
189	Third Harmonic Current Injection in Fault-Tolerant Five-Phase Permanent-Magnet Motor Drive. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 6970-6979	7.2	47
188	Quantitative Comparison of Integral and Fractional Slot Permanent Magnet Vernier Motors. <i>IEEE Transactions on Energy Conversion</i> , 2015 , 30, 1483-1495	5.4	46
187	Stator-Flux-Oriented Fault-Tolerant Control of Flux-Switching Permanent-Magnet Motors. <i>IEEE Transactions on Magnetics</i> , 2011 , 47, 4191-4194	2	46
186	Simplified Fault-Tolerant Model Predictive Control for a Five-Phase Permanent-Magnet Motor With Reduced Computation Burden. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 3850-3858	7.2	44
185	Fault-Tolerant Direct Thrust Force Control for a Dual Inverter Fed Open-End Winding Linear Vernier Permanent-Magnet Motor Using Improved SVPWM. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 7458-7467	8.9	42
184	A Linear Doubly Salient Permanent-Magnet Motor With Modular and Complementary Structure. <i>IEEE Transactions on Magnetics</i> , 2011 , 47, 4809-4821	2	41
183	A Novel MTPA Control Strategy for IPMSM Drives by Space Vector Signal Injection. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 9243-9252	8.9	40
182	Minimization of Cogging Force in a Novel Linear Permanent-Magnet Motor for Artificial Hearts. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 3901-3904	2	40
181	Diagnosis and Tolerance of Common Electrical Faults in T-Type Three-Level Inverters Fed Dual Three-Phase PMSM Drives. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1753-1769	7.2	37
180	Nonlinear Adaptive Lumped Parameter Magnetic Circuit Analysis for Spoke-Type Fault-Tolerant Permanent-Magnet Motors. <i>IEEE Transactions on Magnetics</i> , 2013 , 49, 5150-5157	2	36
179	Sensorless Control of a Linear Permanent-Magnet Motor Based on an Improved Disturbance Observer. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9291-9300	8.9	36
178	Improvement of Torque Capability of Permanent-Magnet Motor by Using Hybrid Rotor Configuration. <i>IEEE Transactions on Energy Conversion</i> , 2017 , 32, 953-962	5.4	35

177	Linear primary permanent magnet vernier machine for wave energy conversion. <i>IET Electric Power Applications</i> , 2015 , 9, 203-212	1.8	35
176	Star and Delta Hybrid Connection of a FSCW PM Machine for Low Space Harmonics. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9266-9279	8.9	35
175	Reduction of Torque Ripple in Inset Permanent Magnet Synchronous Motor by Magnets Shifting. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-13	2	35
174	Asymmetrical SVPWM Fault-Tolerant Control of Five-Phase PM Brushless Motors. <i>IEEE Transactions on Energy Conversion</i> , 2017 , 32, 12-22	5.4	35
173	. IEEE Transactions on Magnetics, 2013 , 49, 1493-1504	2	34
172	Design Optimization of a Spoke-Type Permanent-Magnet Vernier Machine for Torque Density and Power Factor Improvement. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 3446-3456	6.8	31
171	Design and Analysis of a New Linear Hybrid Excited Flux Reversal Motor With Inset Permanent Magnets. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	31
170	A Novel Finite-Control-Set Model Predictive Current Control for Five-Phase PM Motor With Continued Modulation. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 7261-7270	7.2	31
169	Design and Analysis of a Halbach Magnetized Magnetic Screw for Artificial Heart. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	30
168	Overview of permanent-magnet fault-tolerant machines: Topology and design. <i>CES Transactions on Electrical Machines and Systems</i> , 2018 , 2, 51-64	2.3	29
167	Torque Calculation of Five-Phase Interior Permanent Magnet Machine Using Improved Analytical Method. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 1023-1032	5.4	29
166	Modular Reluctance Network Simulation of a Linear Permanent-Magnet Vernier Machine Using New Mesh Generation Methods. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 5323-5332	8.9	27
165	Design and Analysis of New Vernier Permanent-Magnet Machine With Improved Torque Capability. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	26
164	A Generalized Equivalent Magnetic Network Modeling Method for Vehicular Dual-Permanent-Magnet Vernier Machines. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 1950-1962	2 ^{5.} 4	26
163	Dynamic Performance Improvement of Five-Phase Permanent-Magnet Motor With Short-Circuit Fault. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 145-155	8.9	23
162	Hybrid Modulation Fault-Tolerant Control of Open-End Windings Linear Vernier Permanent-Magnet Motor With Floating Capacitor Inverter. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 2563-2572	7.2	23
161	Comparison of Linear Primary Permanent Magnet Vernier Machine and Linear Vernier Hybrid Machine. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	23
160	Influence of magnet shape on the cogging torque of a surface-mounted permanent magnet motor. <i>Chinese Journal of Electrical Engineering</i> , 2019 , 5, 40-50	4	23

159	Design to Reduce Rotor Losses in Fault-Tolerant Permanent-Magnet Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 8476-8487	8.9	22
158	Principle of Torque-Angle Approaching in a Hybrid Rotor Permanent-Magnet Motor. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 2580-2591	8.9	22
157	. IEEE Transactions on Magnetics, 2014 , 50, 1-10	2	22
156	Design Considerations of Fault-Tolerant Permanent Magnet Vernier Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 7290-7300	8.9	22
155	Nonlinear Equivalent Magnetic Network of a Linear Permanent Magnet Vernier Machine With End Effect Consideration. <i>IEEE Transactions on Magnetics</i> , 2018 , 54, 1-9	2	21
154	Design and Analysis of a New Modular Linear Flux-Reversal Permanent-Magnet Motor. <i>IEEE Transactions on Applied Superconductivity</i> , 2014 , 24, 1-5	1.8	21
153	Design Optimization and Test of a Radially Magnetized Magnetic Screw With Discretized PMs. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 7536-7547	8.9	20
152	Integrated Magnetic-Geared Machine With Sandwiched Armature Stator for Low-Speed Large-Torque Applications. <i>IEEE Transactions on Magnetics</i> , 2012 , 48, 4184-4187	2	20
151	Design and Analysis of a New Fault-Tolerant Linear Permanent-Magnet Motor for Maglev Transportation Applications. <i>IEEE Transactions on Applied Superconductivity</i> , 2012 , 22, 5200204-520020	4 ^{1.8}	20
150	Effect of Phase Shift Angle on Radial Force and Vibration Behavior in Dual Three-Phase PMSM. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 2988-2998	8.9	20
149	Overview of Flux-Modulation Machines Based on Flux-Modulation Principle: Topology, Theory, and Development Prospects. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 612-624	7.6	19
148	Enhanced Fault-Tolerant Model Predictive Current Control for a Five-Phase PM Motor With Continued Modulation. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 3236-3246	7.2	19
147	. IEEE Transactions on Industrial Electronics, 2018 , 65, 9113-9123	8.9	18
146	High-Performance Fault Tolerant Halbach Permanent Magnet Vernier Machines for Safety-Critical Applications. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	18
145	A New Modeling Approach for Permanent Magnet Vernier Machine With Modulation Effect Consideration. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-12	2	18
144	A Linear Stator Permanent Magnet Vernier HTS Machine for Wave Energy Conversion. <i>IEEE Transactions on Applied Superconductivity</i> , 2012 , 22, 5202505-5202505	1.8	18
143	A Novel Dual-Permanent-Magnet-Excited Machine With Non-Uniformly Distributed Permanent-Magnets and Flux Modulation Poles on the Stator. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7104-7115	6.8	16
142	Effect of circumferential segmentation of permanent magnets on rotor loss in fractional-slot concentrated-winding machines. <i>IET Electric Power Applications</i> , 2017 , 11, 1151-1159	1.8	16

141	Modified Flux Linkage Observer for Sensorless Direct Thrust Force Control of Linear Vernier Permanent Magnet Motor. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 7800-7811	7.2	16
140	Sleeve design of permanent-magnet machine for low rotor losses. <i>Chinese Journal of Electrical Engineering</i> , 2020 , 6, 86-96	4	15
139	Design of a New Magnetic Screw With Discretized PMs. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	14
138	Improvement of Power Factor in a Double-Side Linear Flux-Modulation Permanent-Magnet Motor for Long Stroke Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 3391-3400	8.9	14
137	Effects of Magnet Shape on Torque Capability of Surface-Mounted Permanent Magnet Machine for Servo Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 2977-2990	8.9	14
136	Multivector Predictive Current Control for Five-Phase PM Motor by Using Hybrid Duty Modulation Technology. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 1603-1612	7.6	13
135	New High Force Density Tubular Permanent-Magnet Motor. <i>IEEE Transactions on Applied Superconductivity</i> , 2014 , 24, 1-5	1.8	13
134	Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles. <i>Journal of Applied Physics</i> , 2012 , 111, 07E713	2.5	13
133	Permanent Magnet Shape Using Analytical Feedback Function for Torque Improvement. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 4619-4630	8.9	13
132	Analysis of Rotor Losses in Permanent Magnet Vernier Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	13
131	Simplified Three-Vector-Based Model Predictive Thrust Force Control With Cascaded Optimization Process for a Double-Side Linear Vernier Permanent Magnet Motor. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 10681-10689	7.2	12
130	Analysis of New Modular Linear Flux Reversal Permanent Magnet Motors. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	12
129	Analysis of PM Eddy Current Loss in Four-Phase Fault-Tolerant Flux-Switching Permanent-Magnet Machines by Air-Gap Magnetic Field Modulation Theory. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 5369-5378	8.9	12
128	Modern electric machines and drives for wind power generation: A review of opportunities and challenges. <i>IET Renewable Power Generation</i> , 2021 , 15, 1864-1887	2.9	12
127	Modeling and analysis of spoke-type permanent magnet vernier machine based on equivalent magnetic network method. <i>Chinese Journal of Electrical Engineering</i> , 2018 , 4, 96-103	4	12
126	Investigation of Slot P ole Combination of Dual-Permanent-Magnet-Excited Vernier Machines by Using Air-Gap Field Modulation Theory. <i>IEEE Transactions on Transportation Electrification</i> , 2019 , 5, 1360	71369	11
125	Multi-Objective Optimization Design of a Modular Linear Permanent-Magnet Vernier Machine by Combined Approximation Models and Differential Evolution. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 4634-4645	8.9	11
124	Field-oriented control and direct torque control for a five-phase fault-tolerant flux-switching permanent-magnet motor. <i>Chinese Journal of Electrical Engineering</i> , 2018 , 4, 48-56	4	11

123	. Chinese Journal of Electrical Engineering, 2021 , 7, 111-123	4	11
122	Reduction of Eddy-Current Loss in Flux-Switching Permanent-Magnet Machines Using Rotor Magnetic Flux Barriers. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-5	2	10
121	Design and Analysis of a New Linear Wound-Field Flux Reversal Machine Based on Magnetic Gear Effect. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	10
120	Torque Improvement in Dual M-Phase Permanent-Magnet Machines by Phase Shift for Electric Ship Applications. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 9601-9612	6.8	10
119	Design and Analysis of Low-Cost Tubular Fault-Tolerant Interior Permanent-Magnet Motor. <i>IEEE Transactions on Magnetics</i> , 2016 , 52, 1-4	2	10
118	High reliability linear drive device for artificial hearts. <i>Journal of Applied Physics</i> , 2012 , 111, 07E729	2.5	10
117	A novel double-sided flux-switching permanent magnet linear motor. <i>Journal of Applied Physics</i> , 2015 , 117, 17B530	2.5	9
116	Remedial phase-angle control of a five-phase fault-tolerant permanent-magnet vernier machine with short-circuit fault. <i>CES Transactions on Electrical Machines and Systems</i> , 2017 , 1, 83-88	2.3	9
115	Design and Analysis of Five-Phase Fault-Tolerant Interior Permanent-Magnet Vernier Machine. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	9
114	Design of a spoke-type permanent-magnet motor with optimal winding configuration for electric vehicle applications. <i>Journal of Applied Physics</i> , 2012 , 111, 07E710	2.5	9
113	Neural Network Based Internal Model Decoupling Control of Three-motor Drive System. <i>Electric Power Components and Systems</i> , 2012 , 40, 1621-1638	1	9
112	Improved Fault-Tolerant Model Predictive Torque Control of Five-Phase PMSM by Using Deadbeat Solution. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	9
111	Cost Reduction of a New Fault-Tolerant Halbach Permanent Magnet Machine Using Ferrite Magnet. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	8
110	A hybrid excitation flux-switching permanent magnet linear motor for urban rail transit 2011 ,		8
109	Design and Analysis of a New Hybrid Excited Doubly Salient Machine Capable of Field Control. <i>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)</i> , 2006 ,		8
108	A Generalized Mesh-Based Thermal Network Model for SPM Machines Combining Coupled Winding Solution. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 116-127	8.9	8
107	Analysis and Evaluation of a Linear Primary Permanent Magnet Vernier Machine With Multiharmonics. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 1982-1993	8.9	8
106	Parametric Equivalent Magnetic Network Modeling Approach for Multiobjective Optimization of PM Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 6619-6629	8.9	8

105	Three-Vector-Based Model Predictive Current Control With Zero-Sequence Current Suppression for Open-Winding LPMVM Drives. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 225-236	6.8	8	
104	Fault-Tolerant Control of a Triple Redundant PMA-SynRM Driven Under Single-Phase Open-Circuit by Mono-Inverter. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 11593-11605	7.2	8	
103	Model Predictive Torque Control of Five-Phase PMSM by Using Double Virtual Voltage Vectors Based on Geometric Principle. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2635-2644	7.6	8	
102	Vibration prediction in fault-tolerant flux-switching permanent-magnet machine under healthy and faulty conditions. <i>IET Electric Power Applications</i> , 2017 , 11, 19-28	1.8	7	
101	A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle. <i>Energies</i> , 2014 , 7, 4614-4628	3.1	7	
100	Sensorless Control of Linear Vernier Permanent-Magnet Motor Based on Improved Mover Flux Observer. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 3869-3877	7.2	7	
99	Torque Calculation of Stator Modular PMa-SynRM With Asymmetric Design for Electric Vehicles. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 202-213	7.6	7	
98	Investigation of Bread-Loaf Magnet on Vibration Performance in FSCW PMSM Considering Force Modulation Effect. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 1379-1389	7.6	7	
97	Robust Predictive Current Control for Fault-Tolerant Operation of Five-Phase PM Motors Based on Online Stator Inductance Identification. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 13162-13175	7.2	7	
96	A Hybrid Analytical Model for Permanent Magnet Vernier Machines Considering Saturation Effect. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	7	
95	A Novel Linear Permanent-Magnet Vernier Machine With Improved Force Performance. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-10	2	6	
94	Design and Analysis of a Novel Modular-Stator Tubular Permanent-Magnet Vernier Motor. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-5	1.8	6	
93	Robust Design and Optimization for a Permanent Magnet Vernier Machine With Hybrid Stator. <i>IEEE Transactions on Energy Conversion</i> , 2020 , 35, 2086-2094	5.4	6	
92	HYBRID EXCITED VERNIER MACHINES WITH ALL EXCITATION SOURCES ON THE STATOR FOR ELECTRIC VEHICLES. <i>Progress in Electromagnetics Research M</i> , 2016 , 46, 113-123	0.6	6	
91	Design and Optimization of a Fault Tolerant Modular Permanent Magnet Assisted Synchronous Reluctance Motor With Torque Ripple Minimization. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 8519-8530	8.9	6	
90	Analysis and Design of a Fault-Tolerant Permanent Magnet Vernier Machine With Improved Power Factor. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	6	
89	Separation and comparison of average torque in five-phase IPM machines with distributed and fractional slot concentrated windings. <i>IET Electric Power Applications</i> , 2019 , 13, 285-293	1.8	5	
88	Design and Analysis of Coaxial Magnetic Gears Considering Rotor Losses. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	5	

87	A new tubular fault-tolerant permanent-magnet motor for active vehicle suspension 2012,		5
86	Online Diagnosis of Slight Interturn Short-Circuit Fault for a Low-Speed Permanent Magnet Synchronous Motor. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 104-113	7.6	5
85	Magnetic Gear Ratio Effects on Performances of Linear Primary Permanent Magnet Vernier Motor. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	5
84	Power factor improvement of permanent-magnet linear vernier motor by using dual-inverter with hybrid discontinuous PWM. <i>IET Power Electronics</i> , 2019 , 12, 3438-3446	2.2	5
83	Design and Manufacture of a Linear Actuator Based on Magnetic Screw Transmission. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 1095-1107	8.9	5
82	Vibration Investigation of Spoke-Type PM Machine With Asymmetric Rotor Considering Modulation Effect of Stator Teeth. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 9092-9103	8.9	5
81	A high power factor fault-tolerant vernier permanent-magnet machine. <i>AIP Advances</i> , 2017 , 7, 056622	1.5	4
80	Influence of Armature Windings Pole Numbers on Performances of Linear Permanent-Magnet Vernier Machines. <i>IEEE Transactions on Transportation Electrification</i> , 2019 , 5, 385-394	7.6	4
79	A new fault-tolerant switched flux machine with hybrid permanent magnets. <i>CES Transactions on Electrical Machines and Systems</i> , 2020 , 4, 79-86	2.3	4
78	Hybrid modeling and applications of virtual metro systems 2010 ,		4
78 77	Hybrid modeling and applications of virtual metro systems 2010, A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011,		4
	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position		
77	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011 ,	5.4	
77 76	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011, A redundant flux-switching permanent magnet motor drive for fault-tolerant applications 2008, Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG.	5.4	4
77 76 75	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011, A redundant flux-switching permanent magnet motor drive for fault-tolerant applications 2008, Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG. IEEE Transactions on Energy Conversion, 2021, 1-1 Airgap Magnetic Field Harmonic Synergetic Optimization Approach for Power Factor Improvement		4
77 76 75 74	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011, A redundant flux-switching permanent magnet motor drive for fault-tolerant applications 2008, Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG. IEEE Transactions on Energy Conversion, 2021, 1-1 Airgap Magnetic Field Harmonic Synergetic Optimization Approach for Power Factor Improvement of PM Vernier Machines. IEEE Transactions on Industrial Electronics, 2021, 1-1 Design of a New Fault-Tolerant Linear Permanent-Magnet Vernier Machine. IEEE Journal of	8.9	4 4
77 76 75 74	A new starting method for 12/8-pole doubly salient permanent-magnet motors without position sensor 2011, A redundant flux-switching permanent magnet motor drive for fault-tolerant applications 2008, Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG. IEEE Transactions on Energy Conversion, 2021, 1-1 Airgap Magnetic Field Harmonic Synergetic Optimization Approach for Power Factor Improvement of PM Vernier Machines. IEEE Transactions on Industrial Electronics, 2021, 1-1 Design of a New Fault-Tolerant Linear Permanent-Magnet Vernier Machine. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2020, 1, 172-181 Simplified Minimum Copper Loss Remedial Control of a Five-Phase Fault-Tolerant	2.6	4 4

69	Magneto-Electric Coupling Network Model for Reduction of PM Eddy Current Loss in Flux-Switching Permanent Magnet Machine. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	4
68	Adjustable Model Predictive Control for IPMSM Drives Based on Online Stator Inductance Identification. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	4
67	Phase Shift Technique to Improve Torque of Synchronous Reluctance Machines With Dual M-Phase Windings. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	4
66	A New Mover Separated Linear Magnetic-Field Modulated Motor for Long Stroke Applications. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-5	2	3
65	Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator. <i>AIP Advances</i> , 2018 , 8, 056606	1.5	3
64	Analysis of Magnet Material Effects on Performances of Fault-Tolerant PM Vernier Machines. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	3
63	COMPUTATIONAL FLUID DYNAMICS THERMAL PREDICTION OF FAULT-TOLERANT PERMANENT-MAGNET MOTOR USING A SIMPLIFIED EQUIVALENT MODEL. <i>Progress in Electromagnetics Research M</i> , 2015 , 42, 199-209	0.6	3
62	MODELING AND ANALYSIS OF HALBACH MAGNETIZED PERMANENT-MAGNETS MACHINE BY USING LUMPED PARAMETER MAGNETIC CIRCUIT METHOD. <i>Progress in Electromagnetics Research M</i> , 2015 , 41, 177-188	0.6	3
61	Theory and comparison of the linear stator permanent magnet vernier machine 2011,		3
60	Analysis of Half Halbach Array Configurations in Linear Permanent-Magnet Vernier Machine. <i>Journal of Magnetics</i> , 2017 , 22, 414-422	1.9	3
59	Torque calculation of five-phase synchronous reluctance motors with shifted-asymmetrical-salient-poles under saturation condition. <i>CES Transactions on Electrical Machines and Systems</i> , 2020 , 4, 105-113	2.3	3
58	Electromagnetic Performance of Double-Stator Flux-Modulation Permanent-Magnet Motor. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	3
57	Analysis and Reduction of Electromagnetic Vibration in Fractional-Slot Concentrated-Windings PM Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	3
56	Effect of Phase Shift on Inductance and Short-Circuit Current in Dual Three-Phase 48-Slot/22-Pole Permanent-Magnet Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	3
55	Self-Adapted Model Predictive Current Control for Five-Phase Open-End Winding PMSM With Reduced Switching Loss. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	3
54	. IEEE Transactions on Magnetics, 2017 , 53, 1-4	2	2
53	Stator-Excited Vernier High-Temperature Superconducting Machine for Direct Drive Propulsion. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	2
52	New direct torque control of five-phase fault-tolerant flux-switching permanent-magnet motor drives 2016 ,		2

51	Comparison of coaxial magnetic gears with parallel and series magnetic circuits 2016,		2
50	A new dual stator linear permanent-magnet vernier machine with reduced copper loss. <i>AIP Advances</i> , 2017 , 7, 056679	1.5	2
49	Design and analysis of a novel modular six-phase linear permanent-magnet vernier machine 2017,		2
48	A Novel Double-Stator Tubular Vernier Permanent-Magnet Motor With High Thrust Density and Low Cogging Force. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-7	2	2
47	Remedial operation of a fault-tolerant flux-switching permanent magnet motor for electric vehicle applications 2010 ,		2
46	A New Model Reference Adaptive Control of PMSM Using Neural Network Generalized Inverse. <i>Lecture Notes in Computer Science</i> , 2011 , 58-67	0.9	2
45	Comparison Of Two Interior Permanent-Magnet Motors With Improved Fault-Tolerance 2012,		2
44	Magnetic field analysis of bearingless switched reluctance motor using finite element method 2005 ,		2
43	Improvement in Reliability of Doubly Salient Permanent Magnet Motor Drive 2006,		2
42	Induction Motor Broken Rotor Bar Fault Diagnosis Based on Third-Order Energy Operator Demodulated Current Signal. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4	2
41	Advanced Angle Control Schemes for Stator Hybrid Excited Doubly Salient Motor Drive 2006,		2
40	Fast calculation method of optimal flux-barrier-end position for torque ripple minimisation in SynRMs with and without PMs. <i>IET Electric Power Applications</i> , 2020 , 14, 705-715	1.8	2
39	A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss. <i>Energies</i> , 2016 , 9, 904	3.1	2
38	Improved SVPWM Fault-Tolerant Control Strategy for Five-Phase Permanent-Magnet Motor. <i>Energies</i> , 2019 , 12, 4626	3.1	2
37	Torque Performance Improvement of Consequent-Pole PM Motors With Hybrid Rotor Configuration. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 1561-1572	7.6	2
36	Low-noise design of fault-tolerant flux-switching permanent-magnet machines. <i>IET Electric Power Applications</i> , 2018 , 12, 747-756	1.8	2
35	Multi-objective optimization design of inset-surface permanent magnet machine considering deterministic and robust performances. <i>Chinese Journal of Electrical Engineering</i> , 2021 , 7, 73-87	4	2
34	Duty Ratio Based Direct Torque Control With Enhanced Harmonic Current Suppression for Dual-Three-Phase Permanent Magnet Motor. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	2

33	Design and analysis of a new partitioned stator flux-modulation motor for direct drive applications. <i>IET Electric Power Applications</i> , 2020 , 14, 184-191	1.8	1
32	Design and analysis of open-slot fault-tolerant permanent-magnet motors 2015,		1
31	Thermal prediction of a fault tolerant permanent magnet vernier machine 2015,		1
30	A new fuzzy adaptive combined-inversion control of two-motor drive system 2013,		1
29	Electromagnetic analysis of a new magnetic core of transformer for a contactless electric vehicle charging 2011 ,		1
28	Vibration Reduction Design of Consequent Pole PM Machine by Symmetrizing Local and Global Magnetic Field. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 1-1	8.9	1
27	Modulated Vibration Reduction Design for Integral-Slot Interior Permanent Magnet Synchronous Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 1-1	8.9	1
26	RBF Neural Network Application in Internal Model Control of Permanent Magnet Synchronous Motor. <i>Lecture Notes in Computer Science</i> , 2011 , 68-76	0.9	1
25	A Primary Permanent-Magnet Linear Motor for Urban Rail Transit. <i>Journal of International Conference on Electrical Machines and Systems</i> , 2012 , 1, 54-60		1
24	Extension of Space Vector Signal Injection MTPA Control for IPMSM Into Deep Flux-Weakening Region 2021 ,		1
23	New Smith Internal Model Control of Two-Motor Drive System Based on Neural Network Generalized Inverse. <i>Journal of Control Science and Engineering</i> , 2016 , 2016, 1-12	1.2	1
22	Dynamic Optimization of Chemical Processes using Symbiotic Organisms Search Algorithm 2019 ,		1
21	Fault-Tolerant Predictive Model Control for Five-Phase PM Motor With Optimal Duty Modulation Strategy 2019 ,		1
20	Performance Comparison of Fault-Tolerant Control for Triple Redundant 3B-Phase Phase Motors Driven by Mono-Inverter. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 1-1	7.6	1
19	Quantitative Analysis on Maximum Efficiency Point and Specific High-Efficiency Region of Permanent-Magnet Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	1
18	Deadbeat direct power control for dual three-phase PMSG used in wind turbines. <i>IET Renewable Power Generation</i> , 2021 , 15, 1976-1984	2.9	1
17	Comparative study of partitioned stator flux-modulation motors with different permanent magnet arrays. <i>International Journal of Applied Electromagnetics and Mechanics</i> , 2021 , 1-19	0.4	1
16	Effects of Eccentric Magnet on High-Frequency Vibroacoustic Performance in Integral-Slot SPM Machines. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2393-2403	5.4	1

LIST OF PUBLICATIONS

15	Investigation Into Multitoothed Distribution Design for Magnetless Doubly Salient Machine. <i>IEEE Transactions on Transportation Electrification</i> , 2021 , 7, 2787-2797	7.6	1	
14	Analysis of Split-Tooth Stator PM Vernier Machines With Zero Sequence Current Excitation. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 1-1	8.9	1	
13	Remedy Strategy for Five-Phase FTPMMs Under Single-Phase Short-Circuit Fault by Injecting Harmonic Currents from Third Space. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	1	
12	Direct Torque Control for Dual Three-Phase Permanent Magnet Motor With Improved Torque and Flux. <i>IEEE Transactions on Energy Conversion</i> , 2022 , 1-1	5.4	1	
11	Improved Model Predictive Current Control for Linear Vernier Permanent-Magnet Motor With Efficient Voltage Vectors Selection. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 1-1	8.9	1	
10	Design and development of a magnetic lead screw propulsion device for general transport system. <i>IET Electric Power Applications</i> , 2020 , 14, 492-499	1.8	0	
9	Mechanism Investigation of Ring Type Winding in Linear Permanent Magnet Vernier Machine for Improving Force Density. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 2588-2597	6.8	О	
8	A New Adaptive Control for Five-Phase Fault-Tolerant Flux-Switching Permanent Magnet Motor. <i>International Journal of Rotating Machinery</i> , 2016 , 2016, 1-14	1.3	Ο	
7	Comparison of Excitation Topologies for Fully Stator-HTS Fault-Tolerant Machines. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	О	
6	Distribution Design of Modulator for Split-Pole Flux-Modulation Permanent-Magnet Machine. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 1614-1624	5.4	О	
5	Meshless Generalized Finite Difference Method to Analyze Electromagnetic Performance of SPM Machines With Eccentric Rotor Shape. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9		
4	Position Estimation Error Compensation for Sensorless Control of SPMSM Based on Space Vector Signal Injection. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 1-1	5.4		
3	Multi-Objective Optimization of Interior Permanent Magnet Machine for Heavy-Duty Vehicle Direct-Drive Applications. <i>IEEE Transactions on Energy Conversion</i> , 2022 , 1-1	5.4		
2	Remedial Direct Torque Control for Dual Three-Phase Permanent-Magnet Motor With Harmonic Torque Suppression. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2		
1	Design and Analysis of a Magnetic Field Screw Based on 3-D Magnetic Field Modulation Theory. IEEE Transactions on Energy Conversion, 2022, 1-1	5.4		