Lihui Yuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150073/publications.pdf

Version: 2024-02-01

111975 100601 4,676 71 38 67 citations h-index g-index papers 75 75 75 8277 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dysbiosis of gut microbiota and intestinal damage in mice induced by a single intravenous exposure to CdTe quantum dots at low concentration. Journal of Applied Toxicology, 2022, 42, 1757-1765.	1.4	2
2	NIR-responsive MoS ₂ –Cu ₂ WS ₄ nanosheets for catalytic/photothermal therapy of methicillin-resistant <i>Staphylococcus aureus</i> infections. Nanoscale, 2022, 14, 9796-9805.	2.8	4
3	Elastic Nanovaccine Enhances Dendritic Cellâ€Mediated Tumor Immunotherapy. Small, 2022, 18, .	5.2	21
4	SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA. Sensors and Actuators B: Chemical, 2022, 368, 132245.	4.0	24
5	Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nature Communications, 2022, 13, .	5.8	87
6	Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2021, 2, 20200065.	2.7	73
7	Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. Journal of Colloid and Interface Science, 2021, 586, 601-612.	5.0	40
8	A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Materials Horizons, 2021, 8, 1264-1271.	6.4	51
9	Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant <i>Staphylococcus aureus</i> infections. Biomaterials Science, 2021, 9, 4484-4495.	2.6	30
10	Hyaluronic acid-based nanogels derived from multicomponent self-assembly for imaging-guided chemo-photodynamic cancer therapy. Carbohydrate Polymers, 2021, 268, 118257.	5.1	19
11	A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability. Journal of Materials Chemistry B, 2021, 9, 2266-2274.	2.9	11
12	Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity <i>via </i> peptide functionalized MoS ₂ nanosheets. Biomaterials Science, 2021, 9, 8313-8322.	2.6	4
13	Mitochondria-Targeting MoS ₂ -Based Nanoagents for Enhanced NIR-II Photothermal-Chemodynamic Synergistic Oncotherapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55928-55938.	4.0	26
14	Continuous preparation of antimony nanocrystals with near infrared photothermal property by pulsed laser ablation in liquids. Scientific Reports, 2020, 10, 15095.	1.6	9
15	Cu ₂ MoS ₄ Nanozyme with NIRâ€II Light Enhanced Catalytic Activity for Efficient Eradication of Multidrugâ€Resistant Bacteria. Small, 2020, 16, e2001099.	5.2	110
16	Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots. Journal of Applied Toxicology, 2020, 40, 1131-1140.	1.4	13
17	Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections. Research, 2020, 2020, 9426453.	2.8	65
18	Efficient Bacteria Killing by Cu ₂ WS ₄ Nanocrystals with Enzyme-like Properties and Bacteria-Binding Ability. ACS Nano, 2019, 13, 13797-13808.	7.3	190

#	Article	IF	Citations
19	Antibody-Functionalized MoS2 Nanosheets for Targeted Photothermal Therapy of Staphylococcus aureus Focal Infection. Frontiers in Bioengineering and Biotechnology, 2019, 7, 218.	2.0	35
20	Intracellular MicroRNA Imaging with MoS ₂ -Supported Nonenzymatic Catassembly of DNA Hairpins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20725-20733.	4.0	63
21	Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity. Journal of Colloid and Interface Science, 2019, 543, 96-105.	5.0	44
22	Highly Biocompatible Chlorin e6-Loaded Chitosan Nanoparticles for Improved Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9980-9987.	4.0	103
23	A gold nanoflower-based traceable drug delivery system for intracellular SERS imaging-guided targeted chemo-phototherapy. Journal of Materials Chemistry B, 2018, 6, 3030-3039.	2.9	30
24	Tunable Nonvolatile Memory Behaviors of PCBM–MoS ₂ 2D Nanocomposites through Surface Deposition Ratio Control. ACS Applied Materials & Surface Deposition Ratio Control R	4.0	48
25	Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacteria. Applied Surface Science, 2018, 434, 155-162.	3.1	47
26	Flexible MoS ₂ â€Embedded Human Serum Albumin Hollow Nanocapsules with Long Circulation Times and High Targeting Ability for Efficient Tumor Ablation. Advanced Functional Materials, 2018, 28, 1804081.	7.8	35
27	Polyhedral Oligomeric Silsesquioxane (POSS)-Based Cationic Conjugated Oligoelectrolyte/Porphyrin for Efficient Energy Transfer and Multiamplified Antimicrobial Activity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34455-34463.	4.0	40
28	Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Physical Chemistry Chemical Physics, 2018, 20, 17262-17267.	1.3	40
29	MoS ₂ @polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of <i>Staphylococcus aureus</i> biofilms and wound infection. Nanoscale, 2018, 10, 16711-16720.	2.8	109
30	Synthesis of sandwich-like molybdenum sulfide/mesoporous organosilica nanosheets for photo-thermal conversion and stimuli-responsive drug release. Journal of Colloid and Interface Science, 2017, 496, 261-266.	5.0	22
31	Recent Advances in Synthesis and Biomedical Applications of Twoâ€Dimensional Transition Metal Dichalcogenide Nanosheets. Small, 2017, 13, 1602660.	5.2	221
32	RGD-QD-MoS ₂ nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale, 2017, 9, 15835-15845.	2.8	90
33	A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals. RSC Advances, 2017, 7, 56537-56542.	1.7	11
34	Microwaveâ€Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced Whiteâ€Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2739-2744.	7.8	223
35	Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. Small, 2016, 12, 3550-3558.	5.2	73
36	AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Advances, 2016, 6, 114580-114586.	1.7	12

3

#	Article	IF	Citations
37	Hollow periodic mesoporous organosilica nanospheres by a facile emulsion approach. Journal of Colloid and Interface Science, 2016, 475, 66-71.	5.0	36
38	Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 6826-6833.	4.0	155
39	Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.	5.7	70
40	NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS ₂ -nanosheets wrapped periodic mesoporous organosilicas. Journal of Materials Chemistry B, 2016, 4, 7708-7717.	2.9	44
41	Templating C ₆₀ on MoS ₂ Nanosheets for 2D Hybrid van der Waals <i>p</i> a€" <i>n</i> Nanoheterojunctions. Chemistry of Materials, 2016, 28, 4300-4306.	3.2	58
42	Aqueous phase preparation of ultrasmall MoSe ₂ nanodots for efficient photothermal therapy of cancer cells. Nanoscale, 2016, 8, 2720-2726.	2.8	142
43	Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale, 2016, 8, 602-608.	2.8	98
44	Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chemical Communications, 2016, 52, 529-532.	2.2	102
45	A MoS ₂ –based system for efficient immobilization of hemoglobin and biosensing applications. Nanotechnology, 2015, 26, 274005.	1.3	66
46	Preparation of Highly Dispersed Reduced Graphene Oxide Decorated with Chitosan Oligosaccharide as Electrode Material for Enhancing the Direct Electron Transfer of <i>Escherichia coli</i> . ACS Applied Materials & Colicy (1) and Colicy (2) and Colicy (2) and Colicy (3) are the Colicy (4) and Colicy (4) are the Colicy	4.0	24
47	Synthesis of High Quality CdTe Quantum Dots in Aqueous Solution Using Multidentate Polymer Ligands under Microwave Irradiation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 994-1000.	2.2	0
48	Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Mikrochimica Acta, 2014, 181, 1497-1503.	2.5	145
49	Fluorescence Turn-On Sensing of Ascorbic Acid Based on a Hyperbranched Conjugated Polyelectrolyte. Soft Materials, 2014, 12, 73-78.	0.8	9
50	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS ₂ nanosheets and the enhanced catalytic activity of Pd–MoS ₂ for methanol oxidation. Nanoscale, 2014, 6, 5762-5769.	2.8	311
51	Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 20605-20611.	5.2	76
52	Facile Preparation of Multicolor Polymer Nanoparticle Bioconjugates with Specific Biorecognition. ACS Applied Materials & Distribution (2014), 6, 11129-11135.	4.0	17
53	Creating SERS Hot Spots on MoS ₂ Nanosheets with in Situ Grown Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18735-18741.	4.0	217
54	Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2014, 4, 27625.	1.7	206

#	Article	IF	CITATIONS
55	DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1152-1157.	4.0	138
56	Synthesis of highly dispersed titanium dioxide nanoclusters on reduced graphene oxide for increased glucose sensing. Carbon, 2013, 57, 470-476.	5 . 4	43
57	Highly Sensitive and Selective Determination of Dopamine in the Presence of Ascorbic Acid Using Gold Nanoparticlesâ€Decorated MoS ₂ Nanosheets Modified Electrode. Electroanalysis, 2013, 25, 2523-2529.	1.5	108
58	A controllable approach to development of multi-spectral conjugated polymer nanoparticles with increased emission for cell imaging. Chemical Communications, 2013, 49, 10623.	2.2	24
59	CHAPTER 11.5. Nanoparticles and Quantum Dots. , 2013, , 232-269.		0
60	Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Applied Surface Science, 2013, 266, 188-193.	3.1	75
61	Reduced graphene oxide/PAMAM–silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosensors and Bioelectronics, 2012, 36, 179-185.	5 . 3	152
62	One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. Journal of Materials Chemistry, 2012, 22, 7791.	6.7	76
63	Oneâ€Pot Encapsulation of Luminescent Quantum Dots Synthesized in Aqueous Solution by Amphiphilic Polymers. Small, 2011, 7, 1456-1463.	5. 2	24
64	Waterâ€soluble hyperbranched polyelectrolytes with high fluorescence quantum yield: Facile synthesis and selective chemosensor for Hg ²⁺ and Cu ²⁺ ions. Journal of Polymer Science Part A, 2010, 48, 3431-3439.	2.5	44
65	Label-free detection of glucose based on quantum dots. , 2010, , .		0
66	Microwave-assisted synthesis of water-dispersed core/(doped) shell quantum dots., 2010,,.		0
67	A facile low temperature growth of CdTe nanocrystals using novel dithiocarbamate ligands in aqueous solution. Journal of Materials Chemistry, 2010, 20, 2788.	6.7	10
68	A fluorescent conjugated polymer for trace detection of diamines and biogenic polyamines. Journal of Materials Chemistry, 2010, 20, 9628.	6.7	72
69	Inclusion of Tetracycline Hydrochloride within Supramolecular Gels and Its Controlled Release to Bovine Serum Albumin. Langmuir, 2009, 25, 8434-8438.	1.6	59
70	Synthesis and characterization of red phosphorescent-conjugated polymers containing charged iridium complexes and carbazole unit. Synthetic Metals, 2007, 157, 813-822.	2.1	19
71	Synthesis process dependent photoluminescent properties of Zn2SiO4:Mn2+ upon VUV region. Journal of Alloys and Compounds, 2006, 425, 339-342.	2.8	24