
Payam Mohassel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-sectional Neuromuscular Phenotyping Study of Patients With Arhinia With <i>SMCHD1</i> Variants. Neurology, 2022, 98, .	1.5	3
2	Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nature Communications, 2022, 13, 2306.	5.8	20
3	New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes, 2022, 13, 893.	1.0	2
4	Slowly Progressive Limb-Girdle Weakness and HyperCKemia – Limb Girdle Muscular Dystrophy or Anti-3-Hydroxy-3-Methylglutaryl-CoA-Reductase-Myopathy?. Journal of Neuromuscular Diseases, 2022, , 1-8.	1.1	2
5	A form of muscular dystrophy associated with pathogenic variants in JAG2. American Journal of Human Genetics, 2021, 108, 840-856.	2.6	15
6	Pathogenic variants in TNNC2 cause congenital myopathy due to an impaired force response to calcium. Journal of Clinical Investigation, 2021, 131, .	3.9	11
7	Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nature Medicine, 2021, 27, 1197-1204.	15.2	96
8	Transcriptome analysis of collagen Vlâ€related muscular dystrophy muscle biopsies. Annals of Clinical and Translational Neurology, 2021, 8, 2184-2198.	1.7	10
9	Biallelic loss of function variants in <scp><i>SYT2</i></scp> cause a treatable congenital onset presynaptic myasthenic syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2272-2283.	0.7	20
10	Collagen Vlα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Scientific Reports, 2020, 10, 13749.	1.6	13
11	Cardiac MRI identifies valvular and myocardial disease in a subset of ANO5-related muscular dystrophy patients. Neuromuscular Disorders, 2020, 30, 742-749.	0.3	4
12	Hypoglycemia in patients with congenital muscle disease. BMC Pediatrics, 2020, 20, 57.	0.7	7
13	SPTLC1 Mutations Associated with Early Onset Amyotrophic Lateral Sclerosis. FASEB Journal, 2020, 34, 1-1.	0.2	2
14	Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science, 2019, 366, 351-356.	6.0	99
15	Dominant collagen XII mutations cause a distal myopathy. Annals of Clinical and Translational Neurology, 2019, 6, 1980-1988.	1.7	24
16	Longitudinal changes in clinical outcome measures in COL6-related dystrophies and LAMA2-related dystrophies. Neurology, 2019, 93, e1932-e1943.	1.5	23
17	MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathologica, 2019, 138, 1013-1031.	3.9	31
18	Identification of a Novel Deep Intronic Mutation in CAPN3 Presenting a Promising Target for Therapeutic Splice Modulation. Journal of Neuromuscular Diseases, 2019, 6, 475-483.	1.1	6

PAYAM MOHASSEL

#	Article	IF	CITATIONS
19	Anti-HMGCR myopathy may resemble limb-girdle muscular dystrophy. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e523.	3.1	66
20	Congenital Titinopathy: Comprehensive characterization and pathogenic insights. Annals of Neurology, 2018, 83, 1105-1124.	2.8	93
21	Anti-HMGCR Myopathy. Journal of Neuromuscular Diseases, 2018, 5, 11-20.	1.1	101
22	Loss of tubulin deglutamylase <scp>CCP</scp> 1 causes infantileâ€onset neurodegeneration. EMBO Journal, 2018, 37, .	3.5	86
23	Extracellular matrix-driven congenital muscular dystrophies. Matrix Biology, 2018, 71-72, 188-204.	1.5	44
24	Anti–3â€hydroxyâ€3â€methylglutarylâ€coenzyme a reductase necrotizing myopathy masquerading as a muscular dystrophy in a child. Muscle and Nerve, 2017, 56, 1177-1181.	1.0	30
25	De novo missense variants in <i>HECW2</i> are associated with neurodevelopmental delay and hypotonia. Journal of Medical Genetics, 2017, 54, 84-86.	1.5	46
26	Common and variable clinical, histological, and imaging findings of recessive RYR1-related centronuclear myopathy patients. Neuromuscular Disorders, 2017, 27, 975-985.	0.3	34
27	HSP and deafness. Neurology: Genetics, 2017, 3, e151.	0.9	5
28	Cytoplasmic body pathology in severe ACTA1 -related myopathy in the absence of typical nemaline rods. Neuromuscular Disorders, 2017, 27, 531-536.	0.3	15
29	P4HA1 mutations cause a unique congenital disorder of connective tissue involving tendon, bone, muscle and the eye. Human Molecular Genetics, 2017, 26, 2207-2217.	1.4	37
30	A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nature Communications, 2017, 8, 16077.	5.8	72
31	Congenital, Limb Girdle and Other Muscular Dystrophies. , 2017, , 1112-1122.		1
32	Novel De Novo Mutations in <i>KIF1A</i> as a Cause of Hereditary Spastic Paraplegia With Progressive Central Nervous System Involvement. Journal of Child Neurology, 2016, 31, 1114-1119.	0.7	44
33	Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene <i>Tbx3</i> . DMM Disease Models and Mechanisms, 2016, 9, 1257-1269.	1.2	38
34	Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene <i>Tbx3</i> . Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	2
35	Neurophysiology Simplified for Imagers. Seminars in Musculoskeletal Radiology, 2015, 19, 112-120.	0.4	2
36	Expression of the Dermatomyositis Autoantigen Transcription Intermediary Factor 1γ in Regenerating Muscle. Arthritis and Rheumatology, 2015, 67, 266-272.	2.9	42

PAYAM MOHASSEL

#	Article	IF	CITATIONS
37	Limb-girdle Muscular Dystrophies. , 2015, , 635-666.		1
38	Statinâ€associated autoimmune myopathy and antiâ€HMGCR autoantibodies. Muscle and Nerve, 2013, 48, 477-483.	1.0	115
39	Anterior spinal artery syndrome presenting as cervical myelopathy in a patient with subclavian steal syndrome. Neurology: Clinical Practice, 2013, 3, 358-360.	0.8	4
40	The spectrum of statin myopathy. Current Opinion in Rheumatology, 2013, 25, 747-752.	2.0	57
41	Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nature Reviews Neurology, 2009, 5, 140-152.	4.9	240
42	Attribution of original contribution in large datasets in the era of multiâ€omic studies. Annals of Clinical and Translational Neurology, 0, , .	1.7	0