Michael W Czabaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1500707/publications.pdf

Version: 2024-02-01

759233 642732 38 601 12 23 citations h-index g-index papers 42 42 42 671 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	In-situ imaging of flexure-induced fracture in tape-laminate composites using high-resolution X-ray computed tomography. Composites Science and Technology, 2022, 220, 109288.	7.8	5
2	The hard x-ray nanotomography microscope at the advanced light source. Review of Scientific Instruments, 2022, 93, 023704.	1.3	3
3	In-situ imaging of advanced materials subjected to in-plane biaxial loading using X-ray micro-computed tomography. Composites Science and Technology, 2022, 224, 109453.	7.8	5
4	Characterization of the interlaminar shear strength of IM7/8552 using small-scale short beam shear tests. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106200.	7.6	7
5	Piecewise-linear generalizable cohesive element approach for simulating mixed-mode delamination. Engineering Fracture Mechanics, 2021, 242, 107484.	4.3	5
6	Investigating the effect of grain structure on compressive response of open-cell metal foam using high-fidelity crystal-plasticity modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 140847.	5.6	7
7	Modeling as-manufactured fiber-reinforced microstructures based on X-ray microcomputed tomography. Composites Science and Technology, 2021, 214, 109004.	7.8	8
8	High-throughput feature extraction for measuring attributes of deforming open-cell foams. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 140-150.	4.4	7
9	Formation of cryobiaxial-induced damage in tape-laminate composites. Composite Structures, 2020, 235, 111816.	5.8	3
10	Experimental reexamination of transverse tensile strength for IM7/8552 tape-laminate composites. Journal of Composite Materials, 2020, 54, 3297-3312.	2.4	7
11	4D Imaging of ceramic matrix composites during polymer infiltration and pyrolysis. Acta Materialia, 2020, 201, 547-560.	7.9	14
12	Effect of Processing Parameters on Interlayer Fracture Toughness of Fused Filament Fabrication Thermoplastic Materials. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 77-79.	0.5	1
13	The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. International Journal of Fracture, 2019, 218, 5-61.	2.2	62
14	The third Sandia Fracture Challenge: from theory to practice in a classroom setting. International Journal of Fracture, 2019, 218, 171-194.	2.2	6
15	Authigenic Mineral Texture in Submarine 1979 Basalt Drill Core, Surtsey Volcano, Iceland. Geochemistry, Geophysics, Geosystems, 2019, 20, 3751-3773.	2.5	10
16	A fiber-segmentation algorithm for composites imaged using X-ray microtomography: Development and validation. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105606.	7.6	24
17	Reexamination of the edge crack torsion test for determining the mode III delamination toughness of laminated composites. Engineering Fracture Mechanics, 2019, 215, 138-150.	4.3	10
18	A combined experimental and numerical approach for characterizing ply-level damage in tape-laminate composites subjected to biaxial loading. Composite Structures, 2019, 224, 111062.	5.8	5

#	Article	IF	CITATIONS
19	Microscale Investigation of Transverse Tensile Failure of Fiber-Reinforced Polymer Composites. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 209-212.	0.5	O
20	In-Situ Imaging of Flexure-Induced Fracture in Fiber-Reinforced Composites Using High-Resolution X-Ray Computed Tomography. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 331-334.	0.5	1
21	Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene. Additive Manufacturing, 2018, 22, 883-890.	3.0	9
22	Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene. Additive Manufacturing, 2018, 22, 508-515.	3.0	54
23	Assessment of carbon nanotube yarns as reinforcement for composite overwrapped pressure vessels. Composites Part A: Applied Science and Manufacturing, 2016, 84, 256-265.	7.6	39
24	Extension of Automated 3D Digital Reconstruction to Multi-Directional Fiber Reinforced Composite Microstructures. , $2016, , .$		2
25	Determination of the mode I, mode II, and mixed-mode I–II delamination toughness of a graphite/polyimide composite at room and elevated temperatures. Journal of Composite Materials, 2016, 50, 2235-2253.	2.4	16
26	Simulation of delamination–migration and core crushing in a CFRP sandwich structure. Composites Part A: Applied Science and Manufacturing, 2015, 79, 192-202.	7.6	21
27	Three-dimensional crack surface evolution in mode III delamination toughness tests. Engineering Fracture Mechanics, 2015, 149, 313-325.	4.3	9
28	Automated 3D Digital Reconstruction of Fiber Reinforced Polymer Composites. , 2015, , .		8
29	Observation of intralaminar cracking in the edge crack torsion specimen. Engineering Fracture Mechanics, 2014, 120, 1-14.	4.3	23
30	Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography. Composites Science and Technology, 2014, 105, 174-182.	7.8	94
31	Compressive strength of honeycomb-stiffened graphite/epoxy sandwich panels with barely-visible indentation damage. Journal of Composite Materials, 2014, 48, 2455-2471.	2.4	8
32	Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite. Composites Science and Technology, 2013, 89, 15-23.	7.8	78
33	Damage characterization of quasi-statically indented composite sandwich structures. Journal of Composite Materials, 2013, 47, 1211-1229.	2.4	8
34	Combined Experimental/Numerical Assessment of Compression After Impact of Sandwich Composite Structures. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 793-800.	0.5	1
35	Delamination of moisture saturated graphite/polyimide composites due to rapid heating. Composites Part B: Engineering, 2010, 41, 568-577.	12.0	17
36	Compression After Impact of Sandwich Composite Structures: Experiments and Modeling. , 2010, , .		6

#	Article	IF	CITATIONS
37	Blistering of Moisture Saturated Graphite/Polyimide Composites Due to Rapid Heating. Journal of Composite Materials, 2009, 43, 153-174.	2.4	13
38	Delamination and Blistering Due to Rapid Heating of Moist Composites., 2006,,.		1