Carlos E Astete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1500064/publications.pdf

Version: 2024-02-01

47 papers 1,848 citations

393982 19 h-index 42 g-index

54 all docs

54 docs citations

54 times ranked

2982 citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 247-289.	1.9	606
2	Nanoparticles with entrapped \hat{l}_{\pm} -tocopherol: synthesis, characterization, and controlled release. Nanotechnology, 2008, 19, 105606.	1.3	110
3	Effects of Temperature and UV Light on Degradation of αâ€Tocopherol in Free and Dissolved Form. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 895.	0.8	105
4	Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environmental Science: Nano, 2020, 7, 37-67.	2.2	68
5	Antioxidant Poly(lactic- <i>co</i> -glycolic) Acid Nanoparticles Made with α-Tocopherol–Ascorbic Acid Surfactant. ACS Nano, 2011, 5, 9313-9325.	7.3	63
6	Cellular uptake, antioxidant and antiproliferative activity of entrapped \hat{l} ±-tocopherol and \hat{l} 3-tocotrienol in poly (lactic-co-glycolic) acid (PLGA) and chitosan covered PLGA nanoparticles (PLGA-Chi). Journal of Colloid and Interface Science, 2015, 445, 243-251.	5.0	63
7	Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 209-216.	2.3	58
8	Ca ²⁺ Cross-Linked Alginic Acid Nanoparticles for Solubilization of Lipophilic Natural Colorants. Journal of Agricultural and Food Chemistry, 2009, 57, 7505-7512.	2.4	58
9	Bioavailability and biodistribution of nanodelivered lutein. Food Chemistry, 2016, 192, 915-923.	4.2	57
10	Zein Nanoparticles Uptake and Translocation in Hydroponically Grown Sugar Cane Plants. Journal of Agricultural and Food Chemistry, 2018, 66, 6544-6551.	2.4	56
11	Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers. Journal of Dairy Science, 2015, 98, 5946-5954.	1.4	53
12	Chitosan/PLGA particles for controlled release of \hat{l}_{\pm} -tocopherol in the GI tract via oral administration. Nanomedicine, 2011, 6, 1513-1528.	1.7	43
13	Optimization of microwave assisted extraction parameters of neem (Azadirachta indica A. Juss) oil using the Doehlert's experimental design. Industrial Crops and Products, 2015, 65, 233-240.	2.5	43
14	Cytotoxicity and intracellular fate of PLGA and chitosanâ€coated PLGA nanoparticles in Madin–Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 3599-3611.	2.1	33
15	Zein Nanoparticles Uptake by Hydroponically Grown Soybean Plants. Environmental Science & Emp; Technology, 2017, 51, 14065-14071.	4.6	28
16	Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine, 2016, 11, 1653-1669.	1.7	27
17	Biodistribution of PLGA and PLGA/chitosan nanoparticles after repeat-dose oral delivery in F344 rats for 7 days. Therapeutic Delivery, 2014, 5, 1191-1201.	1.2	24
18	Entrapment and delivery of î±-tocopherol by a self-assembled, alginate-conjugated prodrug nanostructure. Food Hydrocolloids, 2017, 72, 62-72.	5.6	24

#	Article	IF	Citations
19	Topical nanodelivery system of lutein for the prevention of selenite-induced cataract. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 188-197.	1.7	21
20	Synthesis of Poly(DL-Lactide-Co-Glycolide) Nanoparticles with Entrapped Magnetite by Emulsion Evaporation Method. Particulate Science and Technology, 2006, 24, 321-328.	1.1	20
21	Lignin-Graft-Poly(lactic- <i>co</i> -glycolic) Acid Biopolymers for Polymeric Nanoparticle Synthesis. ACS Omega, 2020, 5, 9892-9902.	1.6	20
22	Perspectives in the design of zein-based polymeric delivery systems with programmed wear down for sustainable agricultural applications. Polymer Degradation and Stability, 2018, 155, 130-135.	2.7	19
23	Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line. Nanomedicine, 2020, 15, 981-1000.	1.7	19
24	Enrofloxacin-Impregnated PLGA Nanocarriers for Efficient Therapeutics and Diminished Generation of Reactive Oxygen Species. ACS Applied Nano Materials, 2019, 2, 5035-5043.	2.4	16
25	Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves. Journal of Food Science and Technology, 2016, 53, 1424-1434.	1.4	15
26	Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes. Nanotechnology Reviews, 2017, 6, 209-220.	2.6	15
27	Modulating Mechanical Properties of Collagen–Lignin Composites. ACS Applied Bio Materials, 2019, 2, 3562-3572.	2.3	15
28	Fate of Biodegradable Engineered Nanoparticles Used in Veterinary Medicine as Delivery Systems from a One Health Perspective. Molecules, 2021, 26, 523.	1.7	14
29	Stability and ocular biodistribution of topically administered PLGA nanoparticles. Scientific Reports, 2021, 11, 12270.	1.6	14
30	Encapsulation and controlled release of antioxidants and vitamins., 2008,, 297-330.		13
31	Prevention of infection caused by enteropathogenic E. coli O157:H7 in intestinal cells using enrofloxacin entrapped in polymer based nanocarriers. Journal of Hazardous Materials, 2021, 414, 125454.	6.5	13
32	Zein and lignin-based nanoparticles as soybean seed treatment: translocation and impact on seed and plant health. Applied Nanoscience (Switzerland), 2022, 12, 1557-1569.	1.6	13
33	Nanoentrapped polyphenol coating for sustained drug release from a balloon catheter. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 646-651.	1.6	12
34	Sulfur contaminations inhibit depolymerization of Kraft lignin. Bioresource Technology Reports, 2019, 8, 100341.	1.5	12
35	Lignin nanoparticles as delivery systems to facilitate translocation of methoxyfenozide in soybean (Glycine max). Journal of Agriculture and Food Research, 2022, 7, 100259.	1.2	10
36	Effects of engineered lignin-graft-PLGA and zein-based nanoparticles on soybean health. NanoImpact, 2021, 23, 100329.	2.4	9

#	Article	IF	CITATIONS
37	Asymmetric flow field-flow fractionation (AF4) with fluorescence and multi-detector analysis for direct, real-time, size-resolved measurements of drug release from polymeric nanoparticles. Journal of Controlled Release, 2021, 338, 410-421.	4.8	9
38	Synthesis of Vitamin E-Carnosine (VECAR): New Antioxidant Molecule with Potential Application in Atherosclerosis. Synthetic Communications, 2013, 43, 1299-1313.	1.1	8
39	Bioturbation-Driven Particle Transport in Surface Soil. Soil Science, 2015, 180, 2-9.	0.9	6
40	Elucidating Efficacy of Ingested Positively Charged Zein Nanoparticles Against Noctuidae. Journal of Economic Entomology, 2020, 113, 2739-2744.	0.8	5
41	Biodistribution of orally administered poly(lactic-co-glycolic) acid nanoparticles for 7 days followed by 21 day recovery in F344 rats. NanoImpact, 2017, 5, 1-5.	2.4	4
42	Life History of $\langle i \rangle$ Chrysodeixis includens $\langle i \rangle$ (Lepidoptera: Noctuidae) on Positively Charged Zein Nanoparticles. Environmental Entomology, 0, , .	0.7	4
43	Surface association and uptake of poly(lactic-co-glycolic) acid nanoparticles by Aspergillus flavus. Therapeutic Delivery, 2014, 5, 1179-1190.	1.2	3
44	ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology. AMB Express, 2015, 5, 83.	1.4	3
45	Semi-Volatile Organic Compounds as Chemical Tracers for Estimating Soil Particle Biodiffusion Coefficients. Soil Science, 2016, 181, 457-464.	0.9	2
46	Influence of Nano-Spray Dried Sodium Chloride on the Physicochemical Characteristics of Surface-Salted Cheese Crackers. Food and Nutrition Sciences (Print), 2017, 08, 267-276.	0.2	2
47	Abstract A105: Novel lignin-conjugated PLGA drug delivery system improves efficacy of MEK1/2 inhibitor in triple negative breast cancer., 2019,,.		O