
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499991/publications.pdf Version: 2024-02-01

REIMENL

#	Article	IF	CITATIONS
1	A convenient 3D reconstruction model based on parallel-axis structured light system. Optics and Lasers in Engineering, 2021, 138, 106366.	3.8	18
2	Modified three-wavelength phase unwrapping algorithm for dynamic three-dimensional shape measurement. Optics Communications, 2021, 480, 126409.	2.1	13
3	Surface extraction from micro-computed tomography data for additive manufacturing. Procedia Manufacturing, 2021, 53, 568-575.	1.9	3
4	In-situ monitoring of Direct Energy Deposition via Structured Light System and its application in remanufacturing industry. Procedia Manufacturing, 2021, 53, 64-71.	1.9	3
5	PMENet: phase map enhancement for Fourier transform profilometry using deep learning. Measurement Science and Technology, 2021, 32, 105001.	2.6	12
6	Motion induced error reduction methods for phase shifting profilometry: A review. Optics and Lasers in Engineering, 2021, 141, 106573.	3.8	45
7	In situ monitoring of direct energy deposition via structured light system and its application in remanufacturing industry. International Journal of Advanced Manufacturing Technology, 2021, 116, 959-974.	3.0	9
8	Similarity evaluation of 3D surface topography measurements. Measurement Science and Technology, 2021, 32, 125003.	2.6	6
9	Similarity quantification of 3D surface topography measurements. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110207.	5.0	3
10	4D line-scan hyperspectral imaging. Optics Express, 2021, 29, 34835.	3.4	10
11	Quantifying quality of 3D printed clay objects using a 3D structured light scanning system. Additive Manufacturing, 2020, 32, 100987.	3.0	16
12	Similarity evaluation of topography measurement results by different optical metrology technologies for additive manufactured parts. Optics and Lasers in Engineering, 2020, 126, 105920.	3.8	21
13	Effects of Nozzle Geometries on 3D Printing of Clay Constructs: Quantifying Contour Deviation and Mechanical Properties. Procedia Manufacturing, 2020, 48, 678-683.	1.9	22
14	Correlation approach for quality assurance of additive manufactured parts based on optical metrology. Journal of Manufacturing Processes, 2020, 53, 310-317.	5.9	30
15	Active shape from projection defocus profilometry. Optics and Lasers in Engineering, 2020, 134, 106277.	3.8	8
16	Similarity evaluation of 3D topological measurement results using statistical methods. , 2020, , .		2
17	Fringe projection profilometry by conducting deep learning from its digital twin. Optics Express, 2020, 28, 36568.	3.4	75
18	Uniaxial High-Speed Microscale Three-Dimensional Surface Topographical Measurements Using Fringe Projection. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	1

#	Article	IF	CITATIONS
19	Improved three-dimensional reconstruction model based on coaxial structured light system. , 2020, , .		0
20	Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera. Measurement Science and Technology, 2019, 30, 075202.	2.6	19
21	Surface Roughness Measurement of Additive Manufactured Parts Using Focus Variation Microscopy and Structured Light System. , 2019, , .		2
22	Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling. Optics Express, 2019, 27, 23948.	3.4	14
23	High-speed high dynamic range 3D shape measurement with digital micro-mirror device. , 2019, , .		0
24	Motion induced error compensation method for digital fringe projection system. , 2019, , .		0
25	High dynamic range 3D shape measurement based on multispectral imaging. , 2019, , .		0
26	Motion-induced error reduction for phase shifting profilometry using double-shot-in-single-illumination technique. , 2019, , .		0
27	Real-time high dynamic range 3D scanning with RGB camera. , 2019, , .		0
28	Structured light system calibration with unidirectional fringe patterns. Optics and Lasers in Engineering, 2018, 106, 86-93.	3.8	24
29	High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device. Optics and Lasers in Engineering, 2018, 107, 176-181.	3.8	40
30	Novel method for measuring a dense 3D strain map of robotic flapping wings. Measurement Science and Technology, 2018, 29, 045402.	2.6	17
31	Binarized dual phase-shifting method for high-quality 3D shape measurement. Applied Optics, 2018, 57, 6632.	1.8	12
32	Calibration method for spinning fringe projection: proof-of-concept. Optical Engineering, 2018, 57, 1.	1.0	1
33	Superfast 3D shape measurement of a flapping flight process with motion based segmentation. , 2018, , .		0
34	Superfast, high-resolution dynamic 3D strain measurement of robotic flapping wings. , 2018, , .		0
35	High-resolution 3D shape deformation, displacement, and strain measurement for robotic flapping wings. , 2018, , .		0
36	Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection. Optics and Lasers in Engineering, 2017, 96, 117-123.	3.8	51

#	Article	IF	CITATIONS
37	High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics. International Journal of Intelligent Robotics and Applications, 2017, 1, 86-103.	2.8	66
38	High-speed 3D imaging using digital binary defocusing method vs sinusoidal method. , 2017, , .		2
39	Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers. Optics and Lasers in Engineering, 2017, 91, 232-241.	3.8	45
40	High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method. Optical Engineering, 2017, 56, 074102.	1.0	17
41	Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process. Optics Express, 2017, 25, 27270.	3.4	36
42	Pixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry. Applied Optics, 2017, 56, 1472.	2.1	30
43	Computer-aided-design-model-assisted absolute three-dimensional shape measurement. Applied Optics, 2017, 56, 6770.	1.8	12
44	Method for large-range structured light system calibration. Applied Optics, 2016, 55, 9563.	2.1	42
45	Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry. Optics Express, 2016, 24, 23289.	3.4	53
46	Motion artifact reduction using hybrid Fourier transform with phase-shifting methods. , 2016, , .		0
47	High-resolution, real-time to superfast 3D imaging techniques. , 2016, , .		3
48	Single-shot absolute 3D shape measurement with Fourier transform profilometry. Applied Optics, 2016, 55, 5219.	2.1	59
49	Flexible calibration method for microscopic structured light system using telecentric lens. Optics Express, 2015, 23, 25795.	3.4	74
50	Comparing digital-light-processing (DLP) and liquid-crystal-on-silicon (LCoS) technologies for high-quality 3D shape measurement. Proceedings of SPIE, 2014, , .	0.8	0
51	Novel calibration method for structured-light system with an out-of-focus projector. Applied Optics, 2014, 53, 3415.	1.8	154
52	Structured light system calibration method with optimal fringe angle. Applied Optics, 2014, 53, 7942.	2.1	43
53	High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity. Optics and Lasers in Engineering, 2014, 52, 195-200.	3.8	53
54	Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques. Optics and Lasers in Engineering, 2014, 54, 236-246.	3.8	123

#	Article	IF	CITATIONS
55	Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing. Optics and Lasers in Engineering, 2014, 53, 79-85.	3.8	46
56	Comparing digital-light-processing (DLP) and liquid-crystal-display(LCD) projection technologies for high-quality 3D shape measurement. Proceedings of SPIE, 2014, , .	0.8	0
57	High-speed 3D shape measurement with fiber interference. Proceedings of SPIE, 2014, , .	0.8	5
58	Flexible real-time natural 2D color and 3D shape measurement. Optics Express, 2013, 21, 16736.	3.4	19
59	Comparison between LCOS projector and DLP projector in generating digital sinusoidal fringe patterns. Proceedings of SPIE, 2013, , .	0.8	3
60	Improve dithering technique for 3D shape measurement: phase vs intensity optimization. , 2013, , .		2