M-Sadeeq Jie Tang Balogun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149998/publications.pdf Version: 2024-02-01

53065 50566 9,082 89 48 89 citations h-index g-index papers 93 93 93 11515 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Boosted Storage Kinetics in Thick Hierarchical Micro–Nano Carbon Architectures for High Areal Capacity Liâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1251-1259.	7.3	31
2	Non-oxygen anion-regulated in situ cobalt based heterojunctions for active alkaline hydrogen evolution catalysis. Chemical Engineering Journal, 2022, 433, 133514.	6.6	32
3	Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods. Journal of Energy Chemistry, 2022, 67, 805-813.	7.1	118
4	Molecular cooking: Amino acids trap silicon in carbon matrix to boost lithium-ion storage. Energy Storage Materials, 2022, 46, 344-351.	9.5	25
5	Charge Relays via Dual Carbonâ€Actions on Nanostructured BiVO ₄ for High Performance Photoelectrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	219
6	Synergetic catalyst effect of Ni/Pd dual metal coating accelerating hydrogen storage properties of ZrCo alloy. International Journal of Hydrogen Energy, 2022, 47, 9946-9957.	3.8	13
7	Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Materials Today Sustainability, 2022, 18, 100118.	1.9	100
8	In Situ Grown Coâ€Based Interstitial Compounds: Nonâ€3d Metal and Nonâ€Metal Dual Modulation Boosts Alkaline and Acidic Hydrogen Electrocatalysis. Small, 2022, 18, e2105331.	5.2	122
9	Improved Cycling Performance and High Rate Capacity of LiNi0.8Co0.1Mn0.1O2 Cathode Achieved by Al(PO3)3 Modification via Dry Coating Ball Milling. Coatings, 2022, 12, 319.	1.2	7
10	Deciphering the lithium storage chemistry in flexible carbon fiberâ€based selfâ€supportive electrodes. , 2022, 4, 820-832.		87
11	Ni3N: A multifunctional material for energy storage and electrocatalysis. Materials Today Energy, 2022, 26, 101001.	2.5	29
12	Superior high-rate and cycle performances of a single-phase ferrous orthophosphate Na1.2Fe4(PO4)3 anode material for lithium-ion batteries. Journal of Power Sources, 2022, 535, 231447.	4.0	2
13	Actual pseudocapacity for Li ion storage in tunable coreâ€ s hell electrode architectures. EcoMat, 2022, 4, .	6.8	8
14	3D carbon networks/NiO nanosheets thick electrodes for high areal capacity lithium ion batteries. Electrochemistry Communications, 2022, 139, 107306.	2.3	6
15	All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage. Carbon, 2021, 174, 1-9.	5.4	160
16	Tailoring the cationic and anionic sites of LaFeO ₃ -based perovskite generates multiple vacancies for efficient water oxidation. Journal of Materials Chemistry A, 2021, 9, 16906-16916.	5.2	29
17	Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries. Journal of Central South University, 2021, 28, 361-369.	1.2	24
18	Ni0.58Al0.42 alloy growth on various conductive substrates and their use as advanced self-supportive electrocatalysts for boosted oxygen evolution catalysis. Journal of Alloys and Compounds, 2021, 858, 157729.	2.8	7

#	Article	IF	CITATIONS
19	Advanced Tri-Layer Carbon Matrices with π–π Stacking Interaction for Binder-Free Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 16516-16527.	4.0	18
20	A <i>Special Issue on</i> Functional Materials for Advanced Future Applications. Science of Advanced Materials, 2021, 13, 519-521.	0.1	0
21	Reduced graphene oxide thin layer induced lattice distortion in high crystalline MnO2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors. Carbon, 2021, 174, 556-566.	5.4	52
22	Subâ€Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal apacity Lithium Ion Batteries. Small, 2021, 17, e2100778.	5.2	141
23	Engineering graphite microfiber-based thick electrodes as anode material for lithium ion batteries. Inorganic Chemistry Communication, 2021, 128, 108611.	1.8	7
24	Nanostructured transition metal compounds coated 3D porous core-shell carbon fiber as monolith water splitting electrocatalysts: A general strategy. Chemical Engineering Journal, 2021, 423, 130279.	6.6	140
25	Hollow Co2P/Co-carbon-based hybrids for lithium storage with improved pseudocapacitance and water oxidation anodes. Journal of Materials Science and Technology, 2020, 55, 203-211.	5.6	23
26	Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Materials, 2020, 25, 495-501.	9.5	68
27	Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Materials, 2020, 25, 41-51.	9.5	261
28	Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni–Fe nitride nanoparticles. Materials Today Physics, 2020, 15, 100267.	2.9	67
29	Polypyrrole Hollow Microspheres with Boosted Hydrophilic Properties for Enhanced Hydrogen Evolution Water Dissociation Kinetics. ACS Applied Materials & Interfaces, 2020, 12, 57093-57101.	4.0	29
30	Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Materials Today Energy, 2020, 17, 100461.	2.5	59
31	Hierarchical Co ₃ O ₄ @N-Doped Carbon Composite as an Advanced Anode Material for Ultrastable Potassium Storage. ACS Nano, 2020, 14, 5027-5035.	7.3	121
32	Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids. Nanomaterials, 2020, 10, 1141.	1.9	17
33	Dual Doping Induced Interfacial Engineering of Fe ₂ N/Fe ₃ N Hybrids with Favorable dâ€Band towards Efficient Overall Water Splitting. ChemCatChem, 2019, 11, 6051-6060.	1.8	92
34	CO ₂ Electroreduction: Intermediates Adsorption Engineering of CO ₂ Electroreduction Reaction in Highly Selective Heterostructure Cuâ€Based Electrocatalysts for CO Production (Adv. Energy Mater. 27/2019). Advanced Energy Materials, 2019, 9, 1970107.	10.2	5
35	Surface functionalized 3D carbon fiber boosts the lithium storage behaviour of transition metal oxide nanowires <i>via</i> strong electronic interaction and tunable adsorption energy. Nanoscale Horizons, 2019, 4, 1402-1410.	4.1	19
36	A Simple and Scalable Approach To Remarkably Boost the Overall Water Splitting Activity of Stainless Steel Electrocatalysts. ACS Omega, 2019, 4, 16130-16138.	1.6	73

#	Article	IF	CITATIONS
37	High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO ₂ nanodots as an anode of an all-flexible sodium-ion battery. Journal of Materials Chemistry A, 2019, 7, 2626-2635.	5.2	52
38	Intermediates Adsorption Engineering of CO ₂ Electroreduction Reaction in Highly Selective Heterostructure Cuâ€Based Electrocatalysts for CO Production. Advanced Energy Materials, 2019, 9, 1901396.	10.2	92
39	Co ₃ O ₄ @Cuâ€Based Conductive Metal–Organic Framework Core–Shell Nanowire Electrocatalysts Enable Efficient Lowâ€Overallâ€Potential Water Splitting. Chemistry - A European Journal, 2019, 25, 6575-6583.	1.7	64
40	Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 2019, 251, 181-194.	10.8	260
41	<i>Hybrid implanted hybrid</i> hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. Journal of Materials Chemistry A, 2019, 7, 11150-11159.	5.2	48
42	Polypyrrole-encapsulated amorphous Bi ₂ S ₃ hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 11370-11378.	5.2	99
43	Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 11402-11410.	3.8	167
44	Efficient hydrogen and oxygen evolution electrocatalysis by cobalt and phosphorus dual-doped vanadium nitride nanowires. Materials Today Chemistry, 2019, 11, 1-7.	1.7	75
45	Efficient Hydrogen Evolution Activity and Overall Water Splitting of Metallic Co ₄ N Nanowires through Tunable d-Orbitals with Ultrafast Incorporation of FeOOH. ACS Applied Materials & Interfaces, 2019, 11, 5152-5158.	4.0	120
46	Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 243, 365-372.	10.8	56
47	Boosting Interfacial Interaction in Hierarchical Core–Shell Nanostructure for Highly Effective Visible Photocatalytic Performance. Journal of Physical Chemistry C, 2018, 122, 6137-6143.	1.5	15
48	Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core–double-shell electrodes. Energy and Environmental Science, 2018, 11, 1859-1869.	15.6	216
49	Phase Boundary Derived Pseudocapacitance Enhanced Nickelâ€Based Composites for Electrochemical Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1701681.	10.2	124
50	Covalently Modified Electrode with Pt Nanoparticles Encapsulated in Porous Organic Polymer for Efficient Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 6477-6482.	2.4	13
51	Using pulverization phenomenon to extend electrodes cyclic life of ternary metal oxides. Materials Today Energy, 2018, 9, 311-318.	2.5	15
52	Promoting Alternative Flexible Substrate for Electrode Materials to Achieve Enhanced Lithium Storage Properties. ChemistrySelect, 2018, 3, 6965-6971.	0.7	7
53	Low-valence bicomponent (FeO) _x (MnO) _{1â^'x} nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage. Journal of Materials Chemistry A, 2018, 6, 15274-15283.	5.2	24
54	Chemically-modified stainless steel mesh derived substrate-free iron-based composite as anode materials for affordable flexible energy storage devices. Electrochimica Acta, 2018, 284, 271-278.	2.6	29

#	Article	IF	CITATIONS
55	Enhanced lithium storage performance of porous exfoliated carbon fibers <i>via</i> anchored nickel nanoparticles. RSC Advances, 2018, 8, 17056-17059.	1.7	19
56	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
57	Encapsulated Vanadiumâ€Based Hybrids in Amorphous Nâ€Doped Carbon Matrix as Anode Materials for Lithiumâ€Ion Batteries. Small, 2017, 13, 1702081.	5.2	70
58	Costâ€Effective Alkaline Water Electrolysis Based on Nitrogen―and Phosphorusâ€Doped Selfâ€Supportive Electrocatalysts. Advanced Materials, 2017, 29, 1702095.	11.1	175
59	Oxygenâ€Deficient Threeâ€Dimensional Porous Co ₃ O ₄ Nanowires as an Electrode Material for Water Oxidation and Energy Storage. ChemElectroChem, 2017, 4, 2453-2459.	1.7	38
60	Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2017, 218, 700-708.	10.8	64
61	Etched current collector-guided creation of wrinkles in steel-mesh-supported V ₆ O ₁₃ cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 756-764.	5.2	26
62	A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851.	5.8	198
63	Carbon Quantum Dot Surface-Engineered VO ₂ Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 9733-9744.	4.0	158
64	Three-dimensional nickel nitride (Ni ₃ N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9844-9849.	5.2	203
65	A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy and Environmental Science, 2016, 9, 3411-3416.	15.6	197
66	Dual doping strategy enhanced the lithium storage properties of graphene oxide binary composites. Journal of Materials Chemistry A, 2016, 4, 13431-13438.	5.2	23
67	All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26, 446-455.	8.2	167
68	Three-dimensional Fe3O4 Nanotube Array on Carbon Cloth Prepared from A Facile Route for Lithium ion Batteries. Electrochimica Acta, 2016, 193, 32-38.	2.6	38
69	High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308, 7-17.	4.0	182
70	A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98, 162-178.	5.4	527
71	Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental, 2016, 181, 779-787.	10.8	268
72	Enhancing the Photocatalytic Performance of BiOCl <i>_x</i> l _{1â^'<i>x</i>} by Introducing Surface Disorders and Bi Nanoparticles as Cocatalyst. Advanced Materials Interfaces, 2015, 2, 1500249.	1.9	82

#	Article	IF	CITATIONS
73	Three-dimensional TiO ₂ /CeO ₂ nanowire composite for efficient formaldehyde oxidation at low temperature. RSC Advances, 2015, 5, 7729-7733.	1.7	31
74	Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe ₂ O ₃ /Fe ₃ O ₄ –S coreâ^'shell nanorods for lithium storage. Chemical Communications, 2015, 51, 13016-13019.	2.2	68
75	Facile Hydrothermal Synthesis of Three Dimensional Hematite Nanostructures with Enhanced Water Splitting Performance. Electrochimica Acta, 2015, 186, 95-100.	2.6	24
76	Vanadium Nitride Nanowire Supported SnS ₂ Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23205-23215.	4.0	115
77	Improving the Lithiumâ€Storage Properties of Selfâ€Grown Nickel Oxide: A Backâ€Up from TiO ₂ Nanoparticles. ChemElectroChem, 2015, 2, 1243-1248.	1.7	34
78	Chemically Lithiated TiO ₂ Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25991-26003.	4.0	76
79	Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11, 348-355.	8.2	180
80	Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015, 3, 1364-1387.	5.2	396
81	Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & Interfaces, 2014, 6, 22920-22927.	4.0	370
82	Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10825-10829.	5.2	145
83	Oxygenâ€Deficient Hematite Nanorods as Highâ€Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials, 2014, 26, 3148-3155.	11.1	838
84	Effect of Cu content on structure, hydrogen storage properties and electrode performance of LaNi4.1-x Co0.6Mn0.3Cu x alloys. Journal of Solid State Electrochemistry, 2014, 18, 2563-2572.	1.2	3
85	Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. Journal of Power Sources, 2014, 272, 946-953.	4.0	114
86	Water Surface Assisted Synthesis of Largeâ€Scale Carbon Nanotube Film for Highâ€Performance and Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4724-4729.	11.1	148
87	Effect of high and low temperature on the electrochemical performance of LaNi4.4â^`Co0.3Mn0.3Al hydrogen storage alloys. Journal of Alloys and Compounds, 2013, 579, 438-443.	2.8	30
88	Study on glass-forming ability and hydrogen storage properties of amorphous Mg60Ni30La10â^'xCox (x=0, 4) alloys. Materials Characterization, 2013, 86, 200-205.	1.9	8
89	Effect of Al content on structure and electrochemical properties of LaNi4.4Ââ^`ÂxCo0.3Mn0.3Alx hydrogen storage alloys. International Journal of Hydrogen Energy, 2013, 38, 10926-10931.	3.8	38