Jianqiang Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499814/publications.pdf

Version: 2024-02-01

		218677	168389
67	4,223	26	53
papers	citations	h-index	g-index
67	67	67	3144
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Terahertz Switchable Focusing Planar Lens With a Nanoscale Vanadium Dioxide Integrated Metasurface. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 13-22.	3.1	19
2	Negative refraction in twisted hyperbolic metasurfaces. Nanophotonics, 2022, 11, 1977-1987.	6.0	10
3	Rotated Pillars for Functional Integrated Onâ€Chip Terahertz Spoof Surfaceâ€Plasmonâ€Polariton Devices. Advanced Optical Materials, 2022, 10, .	7.3	23
4	On/Off Switching of Valley Topological Edge States in the Terahertz Region. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	6
5	Multichannel terahertz quasi-perfect vortex beams generation enabled by multifunctional metasurfaces. Nanophotonics, 2022, 11, 3631-3640.	6.0	17
6	Photoconductive Metaâ€Antenna Enabling Terahertz Amplitude Spectrum Manipulation. Advanced Photonics Research, 2021, 2, 2000036.	3.6	5
7	Achromatic Dielectric Metasurface with Linear Phase Gradient in the Terahertz Domain. Advanced Optical Materials, 2021, 9, 2001403.	7.3	27
8	Multifunctional Allâ€Dielectric Metasurfaces for Terahertz Multiplexing. Advanced Optical Materials, 2021, 9, 2100506.	7.3	24
9	Simultaneous Manipulation of Electric and Magnetic Surface Waves by Topological Hyperbolic Metasurfaces. ACS Applied Electronic Materials, 2021, 3, 4203-4209.	4.3	8
10	Broadband Terahertz Achromatic Metasurface with Linear Spatial Phase Gradients., 2021,,.		0
11	Multifunctional dielectric terahertz metasurfaces via spin-decoupled phase control., 2021,,.		o
12	H-type Photoconductive Antennas Manipulated by Nano- And Micron-Scale Meta-Atoms., 2021,,.		1
13	Multifunctional Spatial Mode Multiplexers Based on All-Dielectric Metasurfaces Working at Terahertz Frequencies. , 2021, , .		O
14	Electrically Tunable Perfect Terahertz Absorber Based on a Graphene Salisbury Screen Hybrid Metasurface. Advanced Optical Materials, 2020, 8, 1900660.	7.3	79
15	All-Dielectric Metasurface-Based Quad-Beam Splitter in the Terahertz Regime. IEEE Photonics Journal, 2020, 12, 1-10.	2.0	11
16	Terahertz single-pixel near-field imaging based on active tunable subwavelength metallic grating. Applied Physics Letters, 2020, 116 , .	3.3	14
17	Terahertz Meta-Holograms Reconstruction Based on Compressed Sensing. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	4
18	Couplingâ€Mediated Selective Spinâ€ŧoâ€Plasmonicâ€Orbital Angular Momentum Conversion. Advanced Optical Materials, 2019, 7, 1900713.	7.3	11

#	Article	IF	CITATIONS
19	Anomalous Wave Propagation in Topological Transition Metasurfaces. Advanced Optical Materials, 2019, 7, 1801483.	7.3	13
20	Water Dynamics in the Hydration Shell of Amphiphilic Macromolecules. Journal of Physical Chemistry B, 2019, 123, 2971-2977.	2.6	10
21	High-Performance and Low-Crosstalk Terahertz Plasmonic Crossings. , 2019, , .		O
22	Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express, 2019, 27, 25595.	3.4	20
23	All-Dielectric Meta-Holograms with Holographic Images Transforming Longitudinally. ACS Photonics, 2018, 5, 599-606.	6.6	58
24	Highâ€Efficiency Dielectric Metasurfaces for Polarizationâ€Dependent Terahertz Wavefront Manipulation. Advanced Optical Materials, 2018, 6, 1700773.	7.3	137
25	From Terahertz Surface Waves to Spoof Surface Plasmon Polaritons., 2018,,.		1
26	Anisotropic Plasmonic Response of Black Phosphorus Nanostrips in Terahertz Metamaterials. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	24
27	Active control of polarization-dependent near-field coupling in hybrid metasurfaces. Applied Physics Letters, 2018, 113, .	3.3	28
28	Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-7.	2.9	18
29	Polarizationâ€controlled surface plasmon holography. Laser and Photonics Reviews, 2017, 11, 1600212.	8.7	55
30	Aperiodic-metamaterial-based absorber. APL Materials, 2017, 5, .	5.1	23
31	Broadband non-polarizing terahertz beam splitters with variable split ratio. Applied Physics Letters, 2017, 111, .	3.3	67
32	All-Dielectric Meta-lens Designed for Photoconductive Terahertz Antennas. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	19
33	Multi-wavelength lenses for terahertz surface wave. Optics Express, 2017, 25, 24872.	3.4	7
34	Dielectric properties of MgO–ZnO–TiO2-based ceramics at 1ÂMHz and THz frequencies. Journal of Materials Science, 2017, 52, 9335-9343.	3.7	17
35	Polarization and Frequency Multiplexed Terahertz Metaâ€Holography. Advanced Optical Materials, 2017, 5, 1700277.	7.3	54
36	Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 21503-21514.	8.0	66

#	Article	IF	CITATIONS
37	Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials. Optics Letters, 2016, 41, 4562.	3.3	67
38	Plasmonic metalens based on coupled resonators for focusing of surface plasmons. Scientific Reports, 2016, 6, 37861.	3.3	9
39	Near-field surface plasmons on quasicrystal metasurfaces. Scientific Reports, 2016, 6, 26.	3.3	27
40	Asymmetric excitation of surface plasmons by dark mode coupling. Science Advances, 2016, 2, e1501142.	10.3	57
41	A Broadband THz-TDS System Based on DSTMS Emitter and LTG InGaAs/InAlAs Photoconductive Antenna Detector. Scientific Reports, 2016, 6, 26949.	3.3	32
42	Broadband metasurface holograms: toward complete phase and amplitude engineering. Scientific Reports, 2016, 6, 32867.	3.3	160
43	Terahertz dielectric properties of MgO-TiO <inf>2</inf> -ZnO based ceramics., 2015,,.		0
44	Anomalous Surface Wave Launching by Handedness Phase Control. Advanced Materials, 2015, 27, 7123-7129.	21.0	54
45	Dynamic mode coupling in terahertz metamaterials. Scientific Reports, 2015, 5, 10823.	3.3	41
46	Broadband time-domain terahertz radar: Cross section measurement and imaging. , 2015, , .		3
47	Active terahertz modulations based on graphene-silicon hybrid structures. , 2015, , .		0
48	A Broadband Metasurfaceâ€Based Terahertz Flatâ€Lens Array. Advanced Optical Materials, 2015, 3, 779-785.	7.3	175
49	Broadband Terahertz Transparency in a Switchable Metasurface. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	23
50	Tailoring electromagnetic responses in terahertz superconducting metamaterials. Frontiers of Optoelectronics, 2015, 8, 44-56.	3.7	6
51	Metamaterial induced terahertz transparency and absorption. , 2014, , .		0
52	Highly flexible broadband terahertz metamaterial quarterâ€wave plate. Laser and Photonics Reviews, 2014, 8, 626-632.	8.7	217
53	Active graphene-silicon hybrid metamaterial devices. , 2014, , .		0
54	Broadband Terahertz Wave Deflection Based on Câ€shape Complex Metamaterials with Phase Discontinuities (Adv. Mater. 33/2013). Advanced Materials, 2013, 25, 4566-4566.	21.0	28

#	Article	IF	CITATIONS
55	A Metamaterial-Based Terahertz Low-Pass Filter With Low Insertion Loss and Sharp Rejection. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 832-837.	3.1	28
56	A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103, .	3.3	318
57	Plasmon-induced transparency in terahertz metamaterials. Science China Information Sciences, 2013, 56, 1-18.	4.3	17
58	Broadband Terahertz Wave Deflection Based on Câ€shape Complex Metamaterials with Phase Discontinuities. Advanced Materials, 2013, 25, 4567-4572.	21.0	353
59	Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities., 2013,,.		0
60	Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101, .	3.3	404
61	Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors. AIP Advances, 2012, 2, .	1.3	30
62	Plasmon-induced transparency in terahertz metamaterials. , 2012, , .		0
63	Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3, 1151.	12.8	1,008
64	Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Applied Physics Letters, $2012,100,100$	3.3	229
65	Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials. Applied Physics Letters, 2011, 98, 121114.	3.3	45
66	Role of mode coupling on transmission properties of subwavelength composite hole-patch structures. Applied Physics Letters, 2010, 96, 251102.	3.3	16
67	Experimental Study of the Transmission and Reflection Properties of Very Deep Zero-order Metallic Gratings with Subwavelength Slits in THz Frequency Region. , 2006, , .		O