Simon A Pope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499809/publications.pdf

Version: 2024-02-01

567144 552653 30 660 15 26 citations h-index g-index papers 31 31 31 793 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Survey of Venus Shock Crossings Dominated by Kinematic Relaxation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028256.	0.8	4
2	The First Direct Observational Confirmation of Kinematic Collisionless Relaxation in Very Low Mach Number Shocks Near the Earth. Journal of Geophysical Research: Space Physics, 2019, 124, 1711-1725.	0.8	17
3	The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3580-3601.	0.8	8
4	A Statistical Study of Ionospheric Boundary Wave Formation at Venus. Journal of Geophysical Research: Space Physics, 2018, 123, 7668-7685.	0.8	4
5	A study of ionopause perturbation and associated boundary wave formation at Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 4284-4298.	0.8	2
6	Validation of single spacecraft methods for collisionless shock velocity estimation. Journal of Geophysical Research: Space Physics, 2017, 122, 8632-8641.	0.8	3
7	Using feedback control to actively regulate the healing rate of a self-healing process subjected to low cycle dynamic stress. Smart Materials and Structures, 2016, 25, 055028.	1.8	11
8	Noise suppression using local acceleration feedback control of an active absorber. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2015, 229, 495-505.	0.7	0
9	Design of Stable and Broadband Remote Vibration Controllers for Systems With Local Nonminimum Phase Dynamics. IEEE Transactions on Control Systems Technology, 2015, , 1-1.	3.2	0
10	Design of remotely located and multi-loop vibration controllers using a sequential loop closing approach. Control Engineering Practice, 2015, 38, 1-10.	3.2	7
11	A multi-layer active elastic metamaterial with tuneable and simultaneously negative mass and stiffness. Smart Materials and Structures, 2014, 23, 075020.	1.8	16
12	An Experimental Analysis of an Active Elastic Metamaterial. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 959-965.	0.4	1
13	Double negative elastic metamaterial design through electrical-mechanical circuit analogies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1467-1474.	1.7	10
14	Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock. Annales Geophysicae, 2013, 31, 1387-1395.	0.6	19
15	Performance and stability analysis of active elastic metamaterials with a tunable double negative response. Smart Materials and Structures, 2012, 21, 125021.	1.8	9
16	Unusual nonlinear waves in the Venusian magnetosheath. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	13
17	Spatial scales of the magnetic ramp at the Venusian bow shock. Annales Geophysicae, 2011, 29, 2081-2088.	0.6	3
18	Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis. Annales Geophysicae, 2011, 29, 639-647.	0.6	34

#	Article	lF	CITATIONS
19	Uncovering Genomic Causes of Co-Morbidity in Epilepsy: Gene-Driven Phenotypic Characterization of Rare Microdeletions. PLoS ONE, 2011, 6, e23182.	1.1	24
20	Viscoelastic locally resonant double negative metamaterials with controllable effective density and elasticity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4250-4255.	0.9	40
21	Giant vortices lead to ion escape from Venus and reâ€distribution of plasma in the ionosphere. Geophysical Research Letters, 2009, 36, .	1.5	38
22	Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planetary and Space Science, 2008, 56, 785-789.	0.9	71
23	Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planetary and Space Science, 2008, 56, 790-795.	0.9	61
24	Venus Express observes a new type of shock with pure kinematic relaxation. Geophysical Research Letters, $2008, 35, .$	1.5	62
25	Venus Express observations of an atypically distant bow shock during the passage of an interplanetary coronal mass ejection. Journal of Geophysical Research, 2008, 113, .	3.3	24
26	Proton cyclotron waves in the solar wind at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	33
27	Little or no solar wind enters Venus' atmosphere at solar minimum. Nature, 2007, 450, 654-656.	13.7	79
28	New synthesis of $(\hat{A}\pm)-\hat{I}\pm$ -CMBHC and its confirmation as a metabolite of $\hat{I}\pm$ -tocopherol (vitamin E). Bioorganic and Medicinal Chemistry, 2001, 9, 1337-1343.	1.4	23
29	A New Method for the Analysis of Urinary Vitamin E Metabolites and the Tentative Identification of a Novel Group of Compounds. Archives of Biochemistry and Biophysics, 2000, 381, 8-15.	1.4	44
30	A material system with integrated fault diagnosis andÂfeedback controlled selfâ€healing. International Journal of Adaptive Control and Signal Processing, 0, , .	2.3	0