Masaki Okumura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Current Opinion in Structural Biology, 2021, 66, 49-57.	5.7	16
2	Conjugate of Thiol and Guanidyl Units with Oligoethylene Glycol Linkage for Manipulation of Oxidative Protein Folding. Molecules, 2021, 26, 879.	3.8	2
3	A unique leucine-valine adhesive motif supports structure and function of protein disulfide isomerase P5 via dimerization. Structure, 2021, 29, 1357-1370.e6.	3.3	8
4	Distinct roles and actions of protein disulfide isomerase family enzymes in catalysis of nascent-chain disulfide bond formation. IScience, 2021, 24, 102296.	4.1	5
5	Ca2+ Regulates ERp57-Calnexin Complex Formation. Molecules, 2021, 26, 2853.	3.8	6
6	Functional Interplay between P5 and PDI/ERp72 to Drive Protein Folding. Biology, 2021, 10, 1112.	2.8	2
7	The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129338.	2.4	66
8	Characterization of the endoplasmic reticulum–resident peroxidases GPx7 and GPx8 shows the higher oxidative activity of GPx7 and its linkage to oxidative protein folding. Journal of Biological Chemistry, 2020, 295, 12772-12785.	3.4	23
9	PDI Family Members as Guides for Client Folding and Assembly. International Journal of Molecular Sciences, 2020, 21, 9351.	4.1	20
10	Antipsychotic olanzapine-induced misfolding of proinsulin in the endoplasmic reticulum accounts for atypical development of diabetes. ELife, 2020, 9, .	6.0	14
11	Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1–40). ACS Nano, 2019, 13, 8766-8783.	14.6	33
12	Coupling effects of thiol and urea-type groups for promotion of oxidative protein folding. Chemical Communications, 2019, 55, 759-762.	4.1	21
13	Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nature Chemical Biology, 2019, 15, 499-509.	8.0	58
14	Impact of membrane curvature on amyloid aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1741-1764.	2.6	88
15	Structural Analyses of a Linker Region of the Amyloid Precursor Protein. Biophysical Journal, 2018, 114, 78a.	0.5	0
16	Ero1-Mediated Reoxidation of Protein Disulfide Isomerase Accelerates the Folding of Cone Snail Toxins. International Journal of Molecular Sciences, 2018, 19, 3418.	4.1	6
17	Energy landscape of polymorphic amyloid generation of β2-microglobulin revealed by calorimetry. Chemical Communications, 2018, 54, 7995-7998.	4.1	14
18	Characterization and optimization of two-chain folding pathways of insulin via native chain assembly. Communications Chemistry, 2018, 1, .	4.5	24

MASAKI OKUMURA

#	Article	IF	CITATIONS
19	Preparation of Selenoinsulin as a Long‣asting Insulin Analogue. Angewandte Chemie - International Edition, 2017, 56, 5522-5526.	13.8	80
20	The Highly Dynamic Nature of ERdj5 Is Key to Efficient Elimination of Aberrant Protein Oligomers through ER-Associated Degradation. Structure, 2017, 25, 846-857.e4.	3.3	25
21	Preparation of Selenoinsulin as a Longâ€Lasting Insulin Analogue. Angewandte Chemie, 2017, 129, 5614-5618.	2.0	18
22	Folding Analyses of the Major Folding Intermediate of Prouroguanylin using Deletion Mutants. Biophysical Journal, 2016, 110, 389a.	0.5	0
23	Redox-assisted regulation of Ca ²⁺ homeostasis in the endoplasmic reticulum by disulfide reductase ERdj5. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6055-E6063.	7.1	74
24	Human ER Oxidoreductin-11± (Ero11±) Undergoes Dual Regulation through Complementary Redox Interactions with Protein-Disulfide Isomerase. Journal of Biological Chemistry, 2016, 291, 23952-23964.	3.4	15
25	Disulfide Selectivity under the Control of Secondary Structure in Protein Folding. Biophysical Journal, 2016, 110, 210a.	0.5	0
26	Cysteines 208 and 241 in Ero1α are required for maximal catalytic turnover. Redox Biology, 2016, 7, 14-20.	9.0	13
27	Structural stability of amyloid fibrils depends on the existence of the peripheral sequence near the core crossâ€î² region. FEBS Letters, 2015, 589, 3541-3547.	2.8	9
28	A PDI-catalyzed thiol–disulfide switch regulates the production of hydrogen peroxide by human Ero1. Free Radical Biology and Medicine, 2015, 83, 361-372.	2.9	59
29	Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radical Biology and Medicine, 2015, 83, 314-322.	2.9	94
30	One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. Journal of Molecular Biology, 2015, 427, 2663-2678.	4.2	37
31	Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A. Journal of Biological Chemistry, 2014, 289, 27004-27018.	3.4	38
32	Regulation of Disulfide Coupled Folding of De Novo Designed Precursor Protein. Biophysical Journal, 2014, 106, 472a.	0.5	0
33	Chemical Methods for Producing Disulfide Bonds in Peptides and Proteins to Study Folding Regulation. Current Protocols in Protein Science, 2014, 76, 28.7.1-28.7.13.	2.8	9
34	Chemical Methods and Approaches to the Regioselective Formation of Multiple Disulfide Bonds. Current Protocols in Protein Science, 2014, 76, 28.8.1-28.8.28.	2.8	3
35	Radically Different Thioredoxin Domain Arrangement of ERp46, an Efficient Disulfide Bond Introducer of the Mammalian PDI Family. Structure, 2014, 22, 431-443.	3.3	49
36	Positively Charged Redox Agents Accelerate Disulfide Coupled Protein Folding. Biophysical Journal, 2014, 106, 472a.	0.5	0

MASAKI OKUMURA

#	Article	IF	CITATIONS
37	Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Scientific Reports, 2013, 3, 2456.	3.3	118
38	Effects of positively charged redox molecules on disulfide oupled protein folding. FEBS Letters, 2012, 586, 3926-3930.	2.8	11
39	Folding Mechanism of a Precursor Protein of a Peptide Hormone Mediated by an Intra-Molecular Chaperone. Biophysical Journal, 2012, 102, 56a.	0.5	0
40	Role of Leu66 in the Folding of Uroguanylin Assisted by Intra-Molecular Chaperone. Biophysical Journal, 2012, 102, 56a.	0.5	0
41	Acceleration of Disulfide-Coupled Protein Folding by Positively Charged Glutathione Derivatives. Biophysical Journal, 2012, 102, 57a.	0.5	0
42	Glutathione Ethylester, a Novel Protein Refolding Reagent, Enhances both the Efficiency of Refolding and Correct Disulfide Formation. Protein Journal, 2012, 31, 499-503.	1.6	4
43	A chemical method for investigating disulfideâ€coupled peptide and protein folding. FEBS Journal, 2012, 279, 2283-2295.	4.7	34
44	Crystallization and preliminary crystallographic analysis of the complex between triiodothyronine and thebb′ fragment of rat protein disulfide isomerase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 476-478.	0.7	2
45	Acceleration of disulfideâ€coupled protein folding using glutathione derivatives. FEBS Journal, 2011, 278, 1137-1144.	4.7	44
46	High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine. Protein Engineering, Design and Selection, 2011, 24, 269-274.	2.1	75
47	Crystallization and preliminary X-ray structural studies of human prouroguanylin. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 531-532.	0.7	3