
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The P2X7 Receptor: A Key Player in IL-1 Processing and Release. Journal of Immunology, 2006, 176, 3877-3883.	0.4	949
2	Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nature Reviews Cancer, 2018, 18, 601-618.	12.8	491
3	Extracellular purines, purinergic receptors and tumor growth. Oncogene, 2017, 36, 293-303.	2.6	428
4	Expression of P2X7 Receptor Increases <i>In Vivo</i> Tumor Growth. Cancer Research, 2012, 72, 2957-2969.	0.4	324
5	The P2X7 receptor: A main player in inflammation. Biochemical Pharmacology, 2018, 151, 234-244.	2.0	282
6	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	0.9	242
7	Stimulation of P2 receptors causes release of IL-1β–loaded microvesicles from human dendritic cells. Blood, 2007, 109, 3856-3864.	0.6	229
8	Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB Journal, 2010, 24, 3393-3404.	0.2	218
9	Increased Proliferation Rate of Lymphoid Cells Transfected with the P2X7 ATP Receptor. Journal of Biological Chemistry, 1999, 274, 33206-33208.	1.6	187
10	P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood, 2002, 99, 706-708.	0.6	179
11	Accelerated Tumor Progression in Mice Lacking the ATP Receptor P2X7. Cancer Research, 2015, 75, 635-644.	0.4	157
12	Pseudoapoptosis Induced by Brief Activation of ATP-gated P2X7 Receptors. Journal of Biological Chemistry, 2005, 280, 33968-33976.	1.6	153
13	The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene, 2015, 34, 5240-5251.	2.6	149
14	The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene, 2019, 38, 3636-3650.	2.6	144
15	Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochemical Journal, 1998, 332, 203-212.	1.7	138
16	P2X7 receptor: Death or life?. Purinergic Signalling, 2005, 1, 219-227.	1.1	126
17	P2X7: a growth-promoting receptor—implications for cancer. Purinergic Signalling, 2009, 5, 251-256.	1.1	124
18	The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death and Disease, 2012, 3, e370-e370.	2.7	117

2

#	Article	IF	CITATIONS
19	P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Frontiers in Pharmacology, 2020, 11, 793.	1.6	102
20	Tyrosine Phosphorylation of HSP90 within the P2X7 Receptor Complex Negatively Regulates P2X7 Receptors. Journal of Biological Chemistry, 2003, 278, 37344-37351.	1.6	98
21	Expression of the P2X7 Receptor Increases the Ca2+ Content of the Endoplasmic Reticulum, Activates NFATc1, and Protects from Apoptosis. Journal of Biological Chemistry, 2009, 284, 10120-10128.	1.6	95
22	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	0.6	93
23	P2X7 Receptor as a Therapeutic Target. Advances in Protein Chemistry and Structural Biology, 2016, 104, 39-79.	1.0	88
24	Stimulation of P2 (P2X 7) receptors in human dendritic cells induces the release of tissue factorâ€bearing microparticles. FASEB Journal, 2007, 21, 1926-1933.	0.2	87
25	The Antibiotic Polymyxin B Modulates P2X7 Receptor Function. Journal of Immunology, 2004, 173, 4652-4660.	0.4	79
26	Trophic Activity of Human P2X7 Receptor Isoforms A and B in Osteosarcoma. PLoS ONE, 2014, 9, e107224.	1.1	78
27	P2X7 Receptor Orchestrates Multiple Signalling Pathways Triggering Inflammation, Autophagy and Metabolic/Trophic Responses. Current Medicinal Chemistry, 2017, 24, 2261-2275.	1.2	76
28	ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells. Frontiers in Immunology, 2017, 8, 1918.	2.2	72
29	Involvement of the Purinergic P2X7 Receptor in the Formation of Multinucleated Giant Cells. Journal of Immunology, 2006, 177, 7257-7265.	0.4	66
30	Stimulation of Purinergic Receptors Modulates Chemokine Expression in Human Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 660-667.	0.3	51
31	Enhanced P2X 7 Activity in Human Fibroblasts From Diabetic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1240-1245.	1.1	50
32	Emerging Roles of P2X Receptors in Cancer. Current Medicinal Chemistry, 2015, 22, 878-890.	1.2	48
33	Amyloid β-dependent mitochondrial toxicity in mouse microglia requires P2X7 receptor expression and is prevented by nimodipine. Scientific Reports, 2019, 9, 6475.	1.6	45
34	Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget, 2017, 8, 5895-5908.	0.8	45
35	P2 receptors in cancer progression and metastatic spreading. Current Opinion in Pharmacology, 2016, 29, 17-25.	1.7	43
36	Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis. Frontiers in Pharmacology, 2018, 9, 500.	1.6	42

#	Article	IF	CITATIONS
37	P2X7 Variants in Oncogenesis. Cells, 2021, 10, 189.	1.8	42
38	Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death and Disease, 2020, 11, 876.	2.7	39
39	Role of the P2X7 receptor in tumor-associated inflammation. Current Opinion in Pharmacology, 2019, 47, 59-64.	1.7	38
40	Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. Methods in Enzymology, 2019, 629, 115-150.	0.4	35
41	P2X7 Receptor Function in Bone-Related Cancer. Journal of Osteoporosis, 2012, 2012, 1-10.	0.1	34
42	Homology modeling and activeâ€site residues probing of the thermophilic <i>Alicyclobacillus acidocaldarius</i> esterase 2. Protein Science, 1999, 8, 1789-1796.	3.1	31
43	P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death and Disease, 2021, 12, 1088.	2.7	31
44	Detection of Extracellular ATP in the Tumor Microenvironment, Using the pmeLUC Biosensor. Methods in Molecular Biology, 2020, 2041, 183-195.	0.4	27
45	P2X receptors: New players in cancer pain. World Journal of Biological Chemistry, 2014, 5, 429.	1.7	24
46	Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death and Disease, 2022, 13, 80.	2.7	24
47	The dominant-negative von Willebrand factor gene deletion p.P1127_C1948delinsR: molecular mechanism and modulation. Blood, 2010, 116, 5371-5376.	0.6	23
48	Role of ATP in Extracellular Vesicle Biogenesis and Dynamics. Frontiers in Pharmacology, 2021, 12, 654023.	1.6	23
49	Human Leukocyte Antigen-A,-B,-C and -DR Alleles and Soluble Human Leukocyte Antigen Class I Serum Level in Ménière's Disease. Acta Oto-Laryngologica, 2002, 122, 26-29.	0.3	19
50	cAMP efflux from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1 transporter. Molecular Human Reproduction, 2010, 16, 481-491.	1.3	19
51	Astrocytesâ€derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. Journal of Extracellular Vesicles, 2021, 10, e12114.	5.5	19
52	The P2X7 Receptor 489C>T Gain of Function Polymorphism Favors HHV-6A Infection and Associates With Female Idiopathic Infertility. Frontiers in Pharmacology, 2020, 11, 96.	1.6	16
53	Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells, 2021, 10, 1782.	1.8	15
54	Involvement of P2X7 Receptors in the Osteogenic Differentiation of Mesenchymal Stromal/Stem Cells Derived from Human Subcutaneous Adipose Tissue. Stem Cell Reviews and Reports, 2019, 15, 574-589.	5.6	14

#	Article	IF	CITATIONS
55	Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2020, 10, 1225.	1.3	14
56	The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. Journal of Bone Oncology, 2021, 31, 100398.	1.0	14
57	Emerging Roles of Purinergic Signaling in Diabetes. Medicinal Chemistry, 2018, 14, 428-438.	0.7	13
58	Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation. Theranostics, 2022, 12, 859-874.	4.6	13
59	P2X7 Receptor in Hematological Malignancies. Frontiers in Cell and Developmental Biology, 2021, 9, 645605.	1.8	12
60	Purinergic signaling in giant cell formation. Frontiers in Bioscience - Elite, 2012, E4, 41.	0.9	8
61	Editorial: Ion Channel Signalling in Cancer: From Molecular Mechanisms to Therapeutics. Frontiers in Pharmacology, 2021, 12, 711593.	1.6	8
62	New intriguing roles of ATP and its receptors in promoting tumor metastasis. Purinergic Signalling, 2013, 9, 487-490.	1.1	6
63	Purinergic Signaling in Bone. Journal of Osteoporosis, 2013, 2013, 1-2.	0.1	5
64	Editorial (Thematic Issue: Purinergic P2X Receptors: Physiological and Pathological Roles and) Tj ETQq0 0 0 rgBT	⁻ /Oyerlock 1,2	105Tf 50 382
65	The ATP/P2X7 axis is a crucial regulator of leukemic initiating cells proliferation and homing and an emerging therapeutic target in acute myeloid leukemia. Purinergic Signalling, 2021, 17, 319-321.	1.1	5
66	A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
67	Somatostatin as a Regulator of First-Trimester Human Trophoblast Functions. Placenta, 2008, 29, 660-670.	0.7	4
68	Abstract 4946: Bitter taste receptors system is expressed and functional in both HSCs and leukemic cells. Cancer Research, 2020, 80, 4946-4946.	0.4	3
69	Editorial: Purinergic P2X receptors: physiological and pathological roles and potential as therapeutic targets. Current Medicinal Chemistry, 2015, 22, 782.	1.2	3
70	Editorial: Emerging Mechanisms in Purinergic Signaling: From Cell Biology to Therapeutic Perspectives. Frontiers in Pharmacology, 2020, 11, 1022.	1.6	0
71	P2X7 Receptor Activation By ATP As Target of Novel Therapies in Acute Myeloid Leukemia. Blood, 2015, 126, 3684-3684.	0.6	0
72	The Induction of Inhibitory Pathways in Dendritic Cells May Hamper the Efficient Activation of Anti-Leukemia T Cells within Chemotherapy-Induced Immunogenic Cell Death. Blood, 2015, 126, 1019-1019.	0.6	0

#	Article	IF	CITATIONS
73	Chemotherapy-Dependent ATP Release from Leukemia Dying Cells Induces Indoleamine 2,3-Dioxygenase 1 in Dendritic Cells. Blood, 2016, 128, 3711-3711.	0.6	0
74	Mechanisms of Tolerance Induction through T Regulatory Cells during Chemotherapy-Mediated Immunogenic Cell Death in Acute Myeloid Leukemia. Blood, 2019, 134, 2332-2332.	0.6	0
75	Purinergic P2X Receptors: Physiological and Pathological Roles and Potential as Therapeutic Targets. Current Medicinal Chemistry, 2014, , .	1.2	Ο