
Marco Bove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499348/publications.pdf Version: 2024-02-01

MARCO ROVE

#	Article	IF	CITATIONS
1	Action Observation Improves Freezing of Gait in Patients With Parkinson's Disease. Neurorehabilitation and Neural Repair, 2010, 24, 746-752.	2.9	155
2	Callosal Contributions to Simultaneous Bimanual Finger Movements. Journal of Neuroscience, 2008, 28, 3227-3233.	3.6	132
3	Neck Muscle Vibration and Spatial Orientation During Stepping in Place in Humans. Journal of Neurophysiology, 2002, 88, 2232-2241.	1.8	115
4	Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans. Journal of Physiology, 2003, 550, 617-630.	2.9	114
5	Use-Dependent Hemispheric Balance. Journal of Neuroscience, 2011, 31, 3423-3428.	3.6	102
6	Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. NeuroImage, 2014, 90, 107-116.	4.2	90
7	Training the Motor Cortex by Observing the Actions of Others During Immobilization. Cerebral Cortex, 2014, 24, 3268-3276.	2.9	85
8	The serial reaction time task revisited: a study on motor sequence learning with an arm-reaching task. Experimental Brain Research, 2009, 194, 143-155.	1.5	84
9	Motor cortical plasticity induced by motor learning through mental practice. Frontiers in Behavioral Neuroscience, 2015, 9, 105.	2.0	84
10	Neck muscle vibration disrupts steering of locomotion. Journal of Applied Physiology, 2001, 91, 581-588.	2.5	80
11	Reduction of Bradykinesia of Finger Movements by a Single Session of Action Observation in Parkinson Disease. Neurorehabilitation and Neural Repair, 2013, 27, 552-560.	2.9	75
12	Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. European Journal of Neuroscience, 2009, 30, 1971-1979.	2.6	72
13	A New App for At-Home Cognitive Training: Description and Pilot Testing on Patients with Multiple Sclerosis. JMIR MHealth and UHealth, 2015, 3, e85.	3.7	71
14	Suppression of the transcallosal motor output: a transcranial magnetic stimulation study in healthy subjects. Experimental Brain Research, 2004, 158, 133-40.	1.5	69
15	Shaping Motor Cortex Plasticity Through Proprioception. Cerebral Cortex, 2014, 24, 2807-2814.	2.9	58
16	Neck proprioception and spatial orientation in cervical dystonia. Brain, 2004, 127, 2764-2778.	7.6	57
17	Adaptive vs. non-adaptive cognitive training by means of a personalized App: a randomized trial in people with multiple sclerosis. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 88.	4.6	56
18	The effects of rate and sequence complexity on repetitive finger movements. Brain Research, 2007, 1153, 84-91.	2.2	52

MARCO BOVE

#	Article	IF	CITATIONS
19	Structural integrity of callosal midbody influences intermanual transfer in a motor reactionâ€ŧime task. Human Brain Mapping, 2011, 32, 218-228.	3.6	49
20	1â€Hz repetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity. European Journal of Neuroscience, 2008, 27, 1285-1291.	2.6	46
21	Spontaneous movement tempo is influenced by observation of rhythmical actions. Brain Research Bulletin, 2009, 80, 122-127.	3.0	46
22	The posture-related interaction between Ia-afferent and descending input on the spinal reflex excitability in humans. Neuroscience Letters, 2006, 397, 301-306.	2.1	45
23	Temporal expectation in focal hand dystonia. Brain, 2013, 136, 444-454.	7.6	45
24	Motor imagery influences the execution of repetitive finger opposition movements. Neuroscience Letters, 2009, 466, 11-15.	2.1	44
25	Quantitative Assessment of Finger Motor Impairment in Multiple Sclerosis. PLoS ONE, 2013, 8, e65225.	2.5	44
26	Posturographic analysis of balance control in patients with essential tremor. Movement Disorders, 2006, 21, 192-198.	3.9	42
27	Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Scientific Reports, 2017, 7, 9300.	3.3	39
28	Observing and perceiving: A combined approach to induce plasticity in human motor cortex. Clinical Neurophysiology, 2015, 126, 1212-1220.	1,5	38
29	Postural control after a strenuous treadmill exercise. Neuroscience Letters, 2007, 418, 276-281.	2.1	37
30	Dynamic Shaping of the Defensive Peripersonal Space through Predictive Motor Mechanisms: When the "Near―Becomes "Far― Journal of Neuroscience, 2017, 37, 2415-2424.	3.6	37
31	Cingulum bundle alterations underlie subjective fatigue in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 442-447.	3.0	34
32	This racket is not mine: The influence of the tool-use on peripersonal space. Neuropsychologia, 2017, 103, 54-58.	1.6	33
33	The fatigue-motor performance paradox in multiple sclerosis. Scientific Reports, 2013, 3, 2001.	3.3	32
34	Action observation: mirroring across our spontaneous movement tempo. Scientific Reports, 2015, 5, 10325.	3.3	32
35	The Cerebellum Predicts the Temporal Consequences of Observed Motor Acts. PLoS ONE, 2015, 10, e0116607.	2.5	29
36	Functional connectivity in the restingâ€state motor networks influences the kinematic processes during motor sequence learning. European Journal of Neuroscience, 2015, 41, 243-253.	2.6	29

MARCO BOVE

#	Article	IF	CITATIONS
37	Spontaneous movement tempo can be influenced by combining action observation and somatosensory stimulation. Frontiers in Behavioral Neuroscience, 2015, 9, 228.	2.0	28
38	Motor training and the combination of action observation and peripheral nerve stimulation reciprocally interfere with the plastic changes induced in primary motor cortex excitability. Neuroscience, 2017, 348, 33-40.	2.3	28
39	Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance. Neuropsychologia, 2017, 96, 89-95.	1.6	23
40	Postural responses to continuous unilateral neck muscle vibration in standing patients with cervical dystonia. Movement Disorders, 2007, 22, 498-503.	3.9	22
41	Movement lateralization and bimanual coordination in children with Tourette syndrome. Movement Disorders, 2011, 26, 2114-2118.	3.9	22
42	Asymmetric transcallosal conduction delay leads to finer bimanual coordination. Brain Stimulation, 2021, 14, 379-388.	1.6	19
43	Motor sequence learning and intermanual transfer with a phantom limb. Cortex, 2018, 101, 181-191.	2.4	18
44	Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience, 2019, 410, 150-159.	2.3	18
45	Consolidation and retention of motor skill after motor imagery training. Neuropsychologia, 2020, 143, 107472.	1.6	18
46	Training methods and analysis of races of a top level Paralympic swimming athlete. Journal of Exercise Rehabilitation, 2018, 14, 612-620.	1.0	18
47	Interhemispheric Inhibition during Mental Actions of Different Complexity. PLoS ONE, 2013, 8, e56973.	2.5	18
48	Brain activity pattern changes after adaptive working memory training in multiple sclerosis. Brain Imaging and Behavior, 2020, 14, 142-154.	2.1	17
49	Selective impairments of motor sequence learning in multiple sclerosis patients with minimal disability. Brain Research, 2014, 1585, 91-98.	2.2	16
50	Fatigue in patients with multiple sclerosis: From movement preparation to motor execution. Journal of the Neurological Sciences, 2015, 351, 52-57.	0.6	15
51	How people with multiple sclerosis cope with a sustained finger motor task: A behavioural and fMRI study. Behavioural Brain Research, 2017, 325, 63-71.	2.2	15
52	â€~Eppur si move': The Association Between Electrophysiological and Psychophysical Signatures of Perceived Movement Illusions. Journal of Motor Behavior, 2018, 50, 37-50.	0.9	15
53	Motor sequence learning: Acquisition of explicit knowledge is concomitant to changes in motor strategy of finger opposition movements. Brain Research Bulletin, 2011, 85, 104-108.	3.0	14
54	Protracted Exercise Without Overt Neuromuscular Fatigue Influences Cortical Excitability. Journal of Motor Behavior, 2013, 45, 127-138.	0.9	14

MARCO BOVE

#	Article	IF	CITATIONS
55	Quantitative assessment of finger motor performance: Normative data. PLoS ONE, 2017, 12, e0186524.	2.5	14
56	Kinaesthetic illusion shapes the cortical plasticity evoked by action observation. Journal of Physiology, 2019, 597, 3233-3245.	2.9	14
57	Basal ganglia are active during motor performance recovery after a demanding motor task. Neurolmage, 2013, 65, 257-266.	4.2	13
58	Imagined actions in multiple sclerosis patients: evidence of decline in motor cognitive prediction. Experimental Brain Research, 2013, 229, 561-570.	1.5	13
59	The kinematics of handwriting movements as expression of cognitive and sensorimotor impairments in people with multiple sclerosis. Scientific Reports, 2017, 7, 17730.	3.3	13
60	Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day. Scientific Reports, 2016, 6, 30126.	3.3	11
61	Defensive peripersonal space is modified by a learnt protective posture. Scientific Reports, 2019, 9, 6739.	3.3	11
62	Boosting and consolidating the proprioceptive cortical aftereffect by combining tendon vibration and repetitive TMS over primary motor cortex. Neurological Sciences, 2019, 40, 147-154.	1.9	11
63	Time-of-day effects on skill acquisition and consolidation after physical and mental practices. Scientific Reports, 2022, 12, 5933.	3.3	11
64	Interaction Between Finger Opposition Movements and Aftereffects of 1Hz-rTMS on Ipsilateral Motor Cortex. Journal of Neurophysiology, 2009, 101, 1690-1694.	1.8	10
65	Interhemispheric inhibition is dynamically regulated during action observation. Cortex, 2016, 78, 138-149.	2.4	10
66	Sensorimotor Skills Impact on Temporal Expectation: Evidence from Swimmers. Frontiers in Psychology, 2017, 8, 1714.	2.1	10
67	An Emotion-Enriched Context Influences the Effect of Action Observation on Cortical Excitability. Frontiers in Human Neuroscience, 2017, 11, 504.	2.0	10
68	Evaluation of Handwriting Movement Kinematics: From an Ecological to a Magnetic Resonance Environment. Frontiers in Human Neuroscience, 2016, 10, 488.	2.0	9
69	Wearing a Mask Shapes Interpersonal Space during COVID-19 Pandemic. Brain Sciences, 2022, 12, 682.	2.3	9
70	Innovative quantitative testing of hand function inÂCharcotâ€Marieâ€Tooth neuropathy. Journal of the Peripheral Nervous System, 2015, 20, 410-414.	3.1	8
71	An engineered glove for investigating the neural correlates of finger movements using functional magnetic resonance imaging. Frontiers in Human Neuroscience, 2015, 9, 503.	2.0	8
72	Selective sensorimotor modulation operates during cognitive representation of movement. Neuroscience, 2019, 409, 16-25.	2.3	7

Marco Bove

#	Article	IF	CITATIONS
73	Effect of arm cycling and task-oriented exercises on fatigue and upper limb performance in multiple sclerosis: a randomized crossover study. International Journal of Rehabilitation Research, 2019, 42, 300-308.	1.3	7
74	Transcutaneous trigeminal nerve stimulation modulates the hand blink reflex. Scientific Reports, 2020, 10, 21116.	3.3	6
75	The last chance to pass the ball: investigating the role of temporal expectation and motor resonance in processing temporal errors in motor actions. Social Cognitive and Affective Neuroscience, 2020, 15, 123-134.	3.0	6
76	The Effect of Static and Dynamic Stretching during Warm-Up on Running Economy and Perception of Effort in Recreational Endurance Runners. International Journal of Environmental Research and Public Health, 2021, 18, 8386.	2.6	6
77	Primary motor cortex excitability as a marker of plasticity in a stimulation protocol combining action observation and kinesthetic illusion of movement. European Journal of Neuroscience, 2021, 53, 2763-2773.	2.6	5
78	When "Extraneous―Becomes "Mine― Neurophysiological Evidence of Sensorimotor Integration During Observation of Suboptimal Movement Patterns Performed by People with Multiple Sclerosis. Neuroscience, 2018, 386, 326-338.	2.3	4
79	Spatial constraints and cognitive fatigue affect motor imagery of walking in people with multiple sclerosis. Scientific Reports, 2020, 10, 21938.	3.3	4
80	Modulation of Response Times During Processing of Emotional Body Language. Frontiers in Psychology, 2021, 12, 616995.	2.1	4
81	The role of proprioception in the consolidation of ipsilateral 1Hz-rTMS effects on motor performance. Clinical Neurophysiology, 2012, 123, 577-581.	1.5	3
82	Effects of aging on finger movements in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 37, 101449.	2.0	3
83	Right Inferior Parietal Lobule Activity Is Associated With Handwriting Spontaneous Tempo. Frontiers in Neuroscience, 2021, 15, 656856.	2.8	3
84	Not Breathing During the Approach Phase Ameliorates Freestyle Turn Performance in Prepubertal Swimmers. Frontiers in Sports and Active Living, 2021, 3, 731953.	1.8	3
85	Sensorimotor inhibition during emotional processing. Scientific Reports, 2022, 12, 6998.	3.3	3
86	Thinking Before Doing: A Pilot Study on the Application of Motor Imagery as a Learning Method During Physical Education Lesson in High School. Frontiers in Sports and Active Living, 2020, 2, 550744.	1.8	2
87	Somatosensory inputs modulate the excitability of cerebellar-cortical interaction. Clinical Neurophysiology, 2021, 132, 3095-3103.	1.5	2
88	Cognitive Strategies to Enhance Motor Performance. , 2018, , 248-281.		1
89	Bimanual coupling effect during a proprioceptive stimulation. Scientific Reports, 2021, 11, 15015.	3.3	1
90	Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience, 2021, 475, 73-82.	2.3	1

#	Article	IF	CITATIONS
91	Is the 12 minute-walk/run test a predictive index of cognitive fitness in young healthy individuals? A pilot study on aerobic capacity and working memory in a real-life scenario. Neuroscience Letters, 2020, 728, 134983.	2.1	Ο
92	Monitoring Strategies and Intervention Policies for the Enhancement and Protection of Advanced Neuroscientific Research Post COVID-19 in Italy: Preliminary Evidence. Frontiers in Public Health, 2021, 9, 748223.	2.7	0