Yang Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499280/publications.pdf

Version: 2024-02-01

1163117 1058476 25 214 8 14 citations h-index g-index papers 25 25 25 262 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure. BioMedical Engineering OnLine, 2019, 18, 41.	2.7	31
2	Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. Sensors, 2019, 19, 2922.	3.8	25
3	A new mathematical model of wrist pulse waveforms characterizes patients with cardiovascular disease $\hat{a} \in A$ pilot study. Medical Engineering and Physics, 2017, 48, 142-149.	1.7	22
4	Diastolic Augmentation Index Improves Radial Augmentation Index in Assessing Arterial Stiffness. Scientific Reports, 2017, 7, 5864.	3.3	19
5	Quantitative Comparison of the Performance of Piezoresistive, Piezoelectric, Acceleration, and Optical Pulse Wave Sensors. Frontiers in Physiology, 2019, 10, 1563.	2.8	16
6	Mitigation of Instrument-Dependent Variability in Ballistocardiogram Morphology: Case Study on Force Plate and Customized Weighing Scale. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 69-78.	6.3	12
7	FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian–cosine fitting. Computers in Biology and Medicine, 2015, 59, 142-151.	7.0	11
8	Effect of short-term exercise intervention on cardiovascular functions and quality of life of chronic heart failure patients: A meta-analysis. Journal of Exercise Science and Fitness, 2016, 14, 67-75.	2.2	11
9	Validation of an Adaptive Transfer Function Method to Estimate the Aortic Pressure Waveform. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 1599-1606.	6.3	11
10	Design and implementation of a pulse wave generator based on Windkessel model using field programmable gate array technology. Biomedical Signal Processing and Control, 2017, 36, 93-101.	5.7	9
11	Effects of different durations of aerobic exercise on the cardiovascular health in untrained women: a meta-analysis and meta-regression. Journal of Sports Medicine and Physical Fitness, 2018, 58, 1525-1536.	0.7	8
12	Estimation of central pulse wave velocity from radial pulse wave analysis. Computer Methods and Programs in Biomedicine, 2022, 219, 106781.	4.7	7
13	Morphology variability of radial pulse wave during exercise. Bio-Medical Materials and Engineering, 2014, 24, 3605-3611.	0.6	6
14	Novel Multichannel Entropy Features and Machine Learning for Early Assessment of Pregnancy Progression Using Electrohysterography. IEEE Transactions on Biomedical Engineering, 2022, 69, 3728-3738.	4.2	6
15	The Noninvasive Measurement of Central Aortic Blood Pressure Waveform. , 0, , .		4
16	Improving the accuracy and robustness of carotid-femoral pulse wave velocity measurement using a simplified tube-load model. Scientific Reports, 2022, 12, 5147.	3.3	4
17	Acute effects of incremental exercise on central hemodynamics in young basketball athletes. , 2017, 2017, 1356-1359.		3
18	Estimation of aortic pulse wave velocity based on waveform decomposition of central aortic pressure waveform. Physiological Measurement, 2021, 42, .	2.1	3

#	Article	IF	Citations
19	Photoplethysmographic assessment of arterial stiffness and endothelial function. , 2022, , 235-276.		2
20	Simultaneous adaption of the gain and phase of a generalized transfer function for aortic pressure waveform estimation. Computers in Biology and Medicine, 2022, 141, 105187.	7.0	2
21	Influence of Electrode Configuration on Muscle-Fiber-Conduction-Velocity Estimation Using Surface Electromyography. IEEE Transactions on Biomedical Engineering, 2022, 69, 2414-2422.	4.2	1
22	Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave. Studies in Health Technology and Informatics, 2017, 245, 573-577.	0.3	1
23	Estimation of carotid artery pressure waveform by transfer function and radial pressure waveform. , $2014, , .$		O
24	Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave., 2017, 2017, 1708-1711.		0
25	Determination of aortic pulse transit time based on waveform decomposition of radial pressure wave. Scientific Reports, 2021, 11, 20154.	3.3	0