
René-marc MÃ"ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498912/publications.pdf Version: 2024-02-01

RENÃO-MARC MÃ"CE

#	Article	IF	CITATIONS
1	Local contractions regulate E-cadherin rigidity sensing. Science Advances, 2022, 8, eabk0387.	4.7	11
2	Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials, 2022, 282, 121380.	5.7	15
3	Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Current Opinion in Genetics and Development, 2022, 73, 101897.	1.5	18
4	Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion. Nature Communications, 2021, 12, 397.	5.8	34
5	Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. Nature Materials, 2021, 20, 1156-1166.	13.3	69
6	Ankyrin G organizes membrane components to promote coupling of cell mechanics and glucose uptake. Nature Cell Biology, 2021, 23, 457-466.	4.6	16
7	Cell migration guided by long-lived spatial memory. Nature Communications, 2021, 12, 4118.	5.8	32
8	Direct measurement of nearâ€nanoâ€Newton forces developed by selfâ€organizing actomyosin fibers bound αâ€catenin. Biology of the Cell, 2021, 113, 441-449.	0.7	1
9	Mechanical plasticity in collective cell migration. Current Opinion in Cell Biology, 2021, 72, 54-62.	2.6	13
10	Active forces modulate collective behaviour and cellular organization. Comptes Rendus - Biologies, 2021, 344, 325-335.	0.1	0
11	The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nature Physics, 2020, 16, 802-809.	6.5	109
12	A subtle relationship between substrate stiffness and collective migration of cell clusters. Soft Matter, 2020, 16, 1825-1839.	1.2	24
13	Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12817-12825.	3.3	122
14	Sustained Oscillations of Epithelial Cell Sheets. Biophysical Journal, 2019, 117, 464-478.	0.2	100
15	Enhanced cell–cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene, 2019, 38, 6283-6300.	2.6	19
16	Molecular basis for fluidization of cancer cells. Nature Materials, 2019, 18, 1147-1148.	13.3	3
17	Cell shape and substrate stiffness drive actin-based cell polarity. Physical Review E, 2019, 99, 012412.	0.8	39
18	Influence of proliferation on the motions of epithelial monolayers invading adherent strips. Soft Matter, 2019, 15, 2798-2810.	1.2	20

#	Article	IF	CITATIONS
19	Myosin II isoforms play distinct roles in adherens junction biogenesis. ELife, 2019, 8, .	2.8	60
20	Force-dependent binding of vinculin to α-catenin regulates cell–cell contact stability and collective cell behavior. Molecular Biology of the Cell, 2018, 29, 380-388.	0.9	99
21	Mechanical forces in cell monolayers. Journal of Cell Science, 2018, 131, .	1.2	45
22	Integration of Cadherin Adhesion and Cytoskeleton at <i>Adherens</i> Junctions. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028738.	2.3	204
23	Why would you like to publish in <i>Biology of the Cell</i> . Biology of the Cell, 2017, 109, 113-114.	0.7	0
24	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
25	Coordination between Intra- and Extracellular Forces Regulates Focal Adhesion Dynamics. Nano Letters, 2017, 17, 399-406.	4.5	63
26	Mechanobiology of collective cell behaviours. Nature Reviews Molecular Cell Biology, 2017, 18, 743-757.	16.1	518
27	A phenomenological model of cell–cell adhesion mediated by cadherins. Journal of Mathematical Biology, 2017, 74, 1657-1678.	0.8	3
28	Mechanics of epithelial tissues during gap closure. Current Opinion in Cell Biology, 2016, 42, 52-62.	2.6	107
29	Remodeling the zonula adherens in response to tension and the role of afadin in this response. Journal of Cell Biology, 2016, 213, 243-260.	2.3	157
30	Epithelial Cell Packing Induces Distinct Modes of Cell Extrusions. Current Biology, 2016, 26, 2942-2950.	1.8	98
31	N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. European Journal of Cell Biology, 2016, 95, 415-426.	1.6	41
32	Front–Rear Polarization by Mechanical Cues: From Single Cells to Tissues. Trends in Cell Biology, 2016, 26, 420-433.	3.6	127
33	Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nature Communications, 2015, 6, 7525.	5.8	233
34	The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity. Journal of Cell Biology, 2015, 210, 333-346.	2.3	73
35	Regulation of epithelial cell organization by tuning cell–substrate adhesion. Integrative Biology (United Kingdom), 2015, 7, 1228-1241.	0.6	52
36	Force-dependent conformational switch of $\hat{I}\pm$ -catenin controls vinculin binding. Nature Communications, 2014, 5, 4525.	5.8	375

#	Article	IF	CITATIONS
37	Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. Journal of Cell Science, 2014, 127, 1660-1671.	1.2	21
38	Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. Development (Cambridge), 2014, 141, e1005-e1005.	1.2	0
39	α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength. Journal of Biological Chemistry, 2013, 288, 4957-4969.	1.6	155
40	N-Cadherin Sustains Motility and Polarity of Future Cortical Interneurons during Tangential Migration. Journal of Neuroscience, 2013, 33, 18149-18160.	1.7	52
41	α-catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adhesion and Migration, 2013, 7, 345-350.	1.1	43
42	N-Cadherin Mediates Neuronal Cell Survival through Bim Down-Regulation. PLoS ONE, 2012, 7, e33206.	1.1	28
43	Strength Dependence of Cadherin-Mediated Adhesions. Biophysical Journal, 2010, 98, 534-542.	0.2	223
44	Meningococcal Type IV Pili Recruit the Polarity Complex to Cross the Brain Endothelium. Science, 2009, 325, 83-87.	6.0	205
45	Multi-level molecular clutches in motile cell processes. Trends in Cell Biology, 2009, 19, 475-486.	3.6	114
46	Cadherin-11 interacts with the FGF receptor and induces neurite outgrowth through associated downstream signalling. Cellular Signalling, 2008, 20, 1061-1072.	1.7	54
47	A Molecular Clutch between the Actin Flow and N-Cadherin Adhesions Drives Growth Cone Migration. Journal of Neuroscience, 2008, 28, 5879-5890.	1.7	144
48	Nucleation and growth of cadherin adhesions. Experimental Cell Research, 2007, 313, 4025-4040.	1.2	57
49	A dileucine motif targets MCAM-I cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Letters, 2006, 580, 3649-3656.	1.3	17
50	Regulation of cell–cell junctions by the cytoskeleton. Current Opinion in Cell Biology, 2006, 18, 541-548.	2.6	243
51	Traction forces exerted through N-cadherin contacts. Biology of the Cell, 2006, 98, 721-730.	0.7	180
52	Regulation of N-Cadherin Dynamics at Neuronal Contacts by Ligand Binding and Cytoskeletal Coupling. Molecular Biology of the Cell, 2006, 17, 862-875.	0.9	68
53	Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6362-6367.	3.3	86
54	A novel function for cadherin-11 in the regulation of motor axon elongation and fasciculation. Molecular and Cellular Neurosciences, 2005, 28, 715-726.	1.0	35

#	Article	IF	CITATIONS
55	Once upon a time there was β-catenin in cadherin-mediated signalling. Biology of the Cell, 2005, 97, 921-926.	0.7	17
56	N-cadherin Activation Substitutes for the Cell Contact Control in Cell Cycle Arrest and Myogenic Differentiation. Journal of Biological Chemistry, 2004, 279, 36795-36802.	1.6	53
57	Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. Journal of Cell Science, 2004, 117, 257-270.	1.2	123
58	Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Letters, 2004, 576, 114-118.	1.3	50
59	La régulation de l'adhérence cellulaire par la région cytoplasmique des cadhérines. Société De Biologie Journal, 2004, 198, 365-374.	0.3	0
60	Heterogeneity and regulation of cellular prion protein glycoforms in neuronal cell lines. European Journal of Neuroscience, 2003, 18, 542-548.	1.2	30
61	Homoassociation of VE-cadherin Follows a Mechanism Common to "Classical―Cadherins. Journal of Molecular Biology, 2003, 325, 733-742.	2.0	36
62	Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. Journal of Cell Biology, 2002, 157, 469-479.	2.3	113
63	Complementary Expression and Regulation of Cadherins 6 and 11 during Specific Steps of Motoneuron Differentiation. Molecular and Cellular Neurosciences, 2002, 20, 458-475.	1.0	33
64	Recruitment of the Kainate Receptor Subunit Glutamate Receptor 6 by Cadherin/Catenin Complexes. Journal of Neuroscience, 2002, 22, 6426-6436.	1.7	94
65	Cadherin-based cell adhesion in neuromuscular development. Biology of the Cell, 2002, 94, 315-326.	0.7	25
66	Upregulation and redistribution of cadherins reveal specific glial and muscle cell phenotypes during Wallerian degeneration and muscle denervation in the mouse. , 1999, 58, 270-283.		13
67	Distinct Location and Prevalence of α-, β-Catenins and γ-Catenin/Plakoglobin in Developing and Denervated Skeletal Muscle. Cell Adhesion and Communication, 1998, 5, 161-176.	1.7	10
68	Cadherins M, 11, and 6 Expression Patterns Suggest Complementary Roles in Mouse Neuromuscular Axis Development. Molecular and Cellular Neurosciences, 1998, 11, 217-233.	1.0	24
69	Localized deposition of M-cadherin in the glomeruli of the granular layer during the postnatal development of mouse cerebellum. , 1997, 378, 180.		2
70	Growth and Cell Density-Dependent Expression of Stathmin in C2 Myoblasts in Culture. Experimental Cell Research, 1996, 224, 8-15.	1.2	35
71	E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells. Cell, 1996, 84, 923-932.	13.5	832
72	M-cadherin Distribution in the Mouse Adult Neuromuscular System Suggests a Role in Muscle Innervation. European Journal of Neuroscience, 1996, 8, 1666-1676.	1.2	26

#	Article	IF	CITATIONS
73	Cadherin-dependent cell aggregation is affected by decapeptide derived from rat extracellular super-oxide dismutase. FEBS Letters, 1995, 363, 289-292.	1.3	32
74	M-cadherin localization in developing adult and regenerating mouse skeletal muscle: possible involvement in secondary myogenesis. Mechanisms of Development, 1995, 50, 85-97.	1.7	47
75	Is Intercellular Communication Via Gap Junctions Required for Myoblast Fusion?. Cell Adhesion and Communication, 1994, 2, 329-343.	1.7	51
76	Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell, 1994, 76, 829-839.	13.5	181
77	N-cadherin and N-CAM-mediated adhesion in development and regeneration of skeletal muscle. Neuromuscular Disorders, 1993, 3, 361-365.	0.3	20
78	Cytotactin is involved in synaptogenesis during regeneration of the frog neuromuscular system. Developmental Biology, 1992, 149, 381-394.	0.9	35
79	Modulation of expression and cell surface distribution of N-CAM during myogenesis in vitro. Neurochemistry International, 1991, 18, 97-106.	1.9	21
80	Abnormal enwrapment of intramuscular axons by distal Schwann cells with defective basal lamina in the muscular dysgenic mouse embryo. Developmental Biology, 1987, 124, 259-268.	0.9	10