
Chuan-De Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZIF-67 Derivative Decorated MXene for a Highly Integrated Flexible Self-Powered Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 19725-19735.	4.0	14
2	Modifying CsPbX ₃ (X = Cl, Br, I) with a Zeolitic Imidazolate Framework through Mechanical Milling for Aqueous Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2022, 5, 6248-6255.	2.5	9
3	Generation of local redox potential from confined nano-bimetals in porous metal silicate materials for high-performance catalysis. Catalysis Science and Technology, 2022, 12, 4584-4590.	2.1	4
4	Heterostructured Moâ€Doped CoP on MXene Supports Enhanced the Alkaline Hydrogen Evolution Activity. ChemistrySelect, 2022, 7, .	0.7	2
5	Transformation of metal–organic frameworks with retained networks. Chemical Communications, 2022, 58, 8602-8613.	2.2	11
6	Passing the framework skeleton and properties of coordination materials onto organic framework materials. Chemical Communications, 2021, 57, 1348-1351.	2.2	2
7	<i>In situ</i> creation of multi-metallic species inside porous silicate materials with tunable catalytic properties. Chemical Communications, 2021, 57, 6185-6188.	2.2	7
8	Photocatalytic Hydrogen Evolution Coupled with Production of Highly Valueâ€Added Organic Chemicals by a Composite Photocatalyst CdIn ₂ S ₄ @MILâ€53â€5O ₃ Ni _{1/2} . Chemistry - an Asian Journal 2021, 16, 1499-1506.	, 1.7	12
9	Engineering Bimetallic Centers in Porous Metal Silicate Materials for Hydrogenation of Furfural at Lower Temperature. , 2021, 3, 1249-1257.		9
10	Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. Research, 2021, 2021, 9835935.	2.8	12
11	Highâ€Loading Pt Singleâ€Atom Catalyst on CeO 2 â€Modified Diatomite Support. Chemistry - an Asian Journal, 2021, 16, 2622-2625.	1.7	6
12	Synthesis and Catalytic Properties of Porous Metal Silica Materials Templated and Functionalized by Extended Coordination Cages. Inorganic Chemistry, 2020, 59, 767-776.	1.9	16
13	Creation of Redoxâ€Active PdS <i>_x</i> Nanoparticles Inside the Defect Pores of MOF UiOâ€66 with Unique Semihydrogenation Catalytic Properties. Advanced Functional Materials, 2020, 30, 1908519.	7.8	24
14	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie, 2020, 132, 1941-1947.	1.6	19
15	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie - International Edition, 2020, 59, 1925-1931.	7.2	81
16	Anchoring Zn-phthalocyanines in the pore matrices of UiO-67 to improve highly the photocatalytic oxidation efficiency. Applied Catalysis B: Environmental, 2020, 279, 119350.	10.8	21
17	<scp>Oneâ€pot</scp> tandem <scp>ringâ€opening</scp> polymerization of <scp><i>N</i>â€sulfonyl</scp> aziridines and "click―chemistry to produce <scp>wellâ€defined starâ€shaped</scp> polyaziridines. Journal of Polymer Science, 2020, 58, 2116-2125.	2.0	15
18	A robust strategy of homogeneously hybridizing silica and Cu3(BTC)2 to in situ synthesize highly dispersed copper catalyst for furfural hydrogenation. Applied Catalysis A: General, 2020, 596, 117518.	2.2	20

CHUAN-DE WU

#	Article	IF	CITATIONS
19	The crucial roles of guest water in a biocompatible coordination network in the catalytic ring-opening polymerization of cyclic esters: a new mechanistic perspective. Chemical Science, 2020, 11, 3345-3354.	3.7	11
20	Modular synthesis of α-aryl β-perfluoroalkyl ketones <i>via</i> N-heterocyclic carbene catalysis. Chemical Communications, 2020, 56, 3801-3804.	2.2	55
21	Tuning the pore structures and photocatalytic properties of a 2D covalent organic framework with multi-branched photoactive moieties. Nanoscale, 2020, 12, 16136-16142.	2.8	25
22	Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. International Journal of Biological Macromolecules, 2019, 137, 939-947.	3.6	61
23	Suspending Ion Electrocatalysts in Charged Metal–Organic Frameworks to Improve the Conductivity and Selectivity in Electroorganic Synthesis. Chemistry - an Asian Journal, 2019, 14, 3627-3634.	1.7	9
24	2-Azaallyl Anion Initiated Ring-Opening Polymerization of <i>N</i> -Sulfonyl Aziridines: One-Pot Synthesis of Primary Amine-Ended Telechelic Polyaziridines. Macromolecules, 2019, 52, 3888-3896.	2.2	23
25	Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices. Science Bulletin, 2019, 64, 385-390.	4.3	10
26	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie, 2019, 131, 8203-8207.	1.6	31
27	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie - International Edition, 2019, 58, 8119-8123.	7.2	41
28	Carboxylic Acid Initiated Organocatalytic Ring-Opening Polymerization of <i>N</i> -Sulfonyl Aziridines: An Easy Access to Well-Controlled Polyaziridine-Based Architectural and Functionalized Polymers. Macromolecules, 2019, 52, 8793-8802.	2.2	26
29	Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 25003-25009.	5.2	20
30	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie - International Edition, 2019, 58, 168-172.	7.2	25
31	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie, 2019, 131, 174-178.	1.6	4
32	Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 378, 445-465.	9.5	131
33	Suspending ionic single-atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature. Journal of Catalysis, 2018, 358, 43-49.	3.1	24
34	Visible-Light Photocatalytic Synthesis of Amines from Imines via Transfer Hydrogenation Using Quantum Dots as Catalysts. Journal of Organic Chemistry, 2018, 83, 11886-11895.	1.7	47
35	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes. Applied Catalysis B: Environmental, 2018, 234, 290-295.	10.8	52
36	Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Coâ€catalyst Platform. ChemCatChem, 2017, 9, 1192-1196.	1.8	28

CHUAN-DE WU

#	Article	IF	CITATIONS
37	Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Advanced Materials, 2017, 29, 1605446.	11.1	275
38	Improvement of the CO ₂ Capture Capability of a Metal–Organic Framework by Encapsulating Dye Molecules inside the Mesopore Space. Crystal Growth and Design, 2017, 17, 2688-2693.	1.4	14
39	Structural Transformation of Porous Polyoxometalate Frameworks and Highly Efficient Biomimetic Aerobic Oxidation of Aliphatic Alcohols. ACS Catalysis, 2017, 7, 6573-6580.	5.5	68
40	Immobilization of polyoxometalates in crystalline solids for highly efficient heterogeneous catalysis. Dalton Transactions, 2016, 45, 10101-10112.	1.6	83
41	Assembly of a Metalloporphyrin–Polyoxometalate Hybrid Material for Highly Efficient Activation of Molecular Oxygen. Inorganic Chemistry, 2016, 55, 7295-7300.	1.9	46
42	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
43	Polarized three-photon-pumped laser in a single MOF microcrystal. Nature Communications, 2016, 7, 11087.	5.8	165
44	A Highly Sensitive Luminescent Dye@MOF Composite for Probing Different Volatile Organic Compounds. ChemPlusChem, 2016, 81, 758-763.	1.3	31
45	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	1.4	21
46	A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry A, 2014, 2, 2628.	5.2	91
47	Rational construction of metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2014, 1, 721-734.	3.0	64
48	A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room temperature. APL Materials, 2014, 2, .	2.2	33
49	Recent advances on porous homochiral coordination polymers containing amino acid synthons. CrystEngComm, 2014, 16, 4907-4918.	1.3	51
50	A NbO type microporous metal–organic framework constructed from a naphthalene derived ligand for CH ₄ and C ₂ H ₂ storage at room temperature. RSC Advances, 2014, 4, 49457-49461.	1.7	23
51	Porous Metal–Organic Frameworks for Heterogeneous Biomimetic Catalysis. Accounts of Chemical Research, 2014, 47, 1199-1207.	7.6	661
52	A Metal–Organic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and Lithium–Sulfur Battery of Long Cycling Life. Crystal Growth and Design, 2013, 13, 5116-5120.	1.4	124
53	A mesoporous lanthanide–organic framework constructed from a dendritic hexacarboxylate with cages of 2.4 nm. CrystEngComm, 2013, 15, 9328.	1.3	36
54	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	5.2	83

CHUAN-DE WU

#	Article	IF	CITATIONS
55	A microporous metal–organic framework assembled from an aromatic tetracarboxylate for H2 purification. Journal of Materials Chemistry A, 2013, 1, 2543.	5.2	62
56	Four Honeycomb Metal–Organic Frameworks with a Flexible Tripodal Polyaromatic Acid. Crystal Growth and Design, 2013, 13, 1429-1437.	1.4	36
57	A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. Crystal Growth and Design, 2013, 13, 2094-2097.	1.4	96
58	Expanded Organic Building Units for the Construction of Highly Porous Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14886-14894.	1.7	66
59	Five coordination networks based on zwitterionic ligands: synthesis, crystal structures and optical properties. CrystEngComm, 2012, 14, 847-852.	1.3	20
60	Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal–organic framework materials. Journal of Materials Chemistry, 2012, 22, 3210.	6.7	200
61	A Multifunctional Organic–Inorganic Hybrid Structure Based on Mn ^{III} –Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst. Journal of the American Chemical Society, 2012, 134, 87-90.	6.6	408
62	Five porphyrin-core-dependent metal–organic frameworks and framework-dependent fluorescent properties. CrystEngComm, 2012, 14, 4850.	1.3	46
63	Five intercalating coordination networks based on an identical anionic lamella and diverse hydrated cations. CrystEngComm, 2011, 13, 6027.	1.3	8
64	Syntheses, crystal structures and optical properties of six homochiral coordination networks based on phenyl acid-amino acids. CrystEngComm, 2011, 13, 6422.	1.3	27
65	A series of metal–organic coordination polymers containing multiple chiral centers. CrystEngComm, 2011, 13, 1570-1579.	1.3	28
66	Crystal Engineering of Metal-Organic Frameworks for Heterogeneous Catalysis. , 2011, , 271-298.		6
67	A Sn ^{IV} –Porphyrin-Based Metal–Organic Framework for the Selective Photo-Oxygenation of Phenol and Sulfides. Inorganic Chemistry, 2011, 50, 5318-5320.	1.9	150
68	Four Novel Coordination Polymers Based on a Flexible Zwitterionic Ligand and Their Framework Dependent Luminescent Properties. Crystal Growth and Design, 2010, 10, 4590-4595.	1.4	55
69	Synthesis of a Bis(1,2,3â€phenylene) Cryptand and Its Dualâ€Response Binding to Paraquat and Diquat. European Journal of Organic Chemistry, 2010, 2010, 6804-6809.	1.2	27
70	Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. Crystal Growth and Design, 2010, 10, 5291-5296.	1.4	44
71	The roles of the coordination modes of bridging ligands for the formation of two 3D metal–organic coordination networks. CrystEngComm, 2010, 12, 3437.	1.3	9
72	Formation of a 2D supramolecular water framework via metal–organic unit templating. CrystEngComm, 2010, 12, 688-690.	1.3	12

#	Article	IF	CITATIONS
73	Heterogeneous catalyzed aryl–nitrogen bond formations using a valine derivative bridged metal–organic coordination polymer. Dalton Transactions, 2009, , 6790.	1.6	20