Eisuke Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498676/publications.pdf Version: 2024-02-01

FISHIKE YAMADA

#	Article	IF	CITATIONS
1	Coupling Problem Between Solid Tube and Shock Wave/Detonation Wave. Combustion Science and Technology, 2014, 186, 1774-1794.	2.3	2
2	Transverse wave generation mechanism in rotating detonation. Proceedings of the Combustion Institute, 2013, 34, 1981-1989.	3.9	72
3	Analysis of flame structure by isotope shift-planar laser induced fluorescence spectrometry of trace OH and OD Radicals. Microchemical Journal, 2013, 106, 334-339.	4.5	6
4	Generation and Dynamics of Sub-Transverse Wave of Cylindrical Detonation. Combustion Science and Technology, 2012, 184, 1568-1590.	2.3	6
5	Numerical Study and Performance Evaluation for a Pulse Detonation Engine with an Exhaust Nozzle (1st Report: Estimation on Performance using a Detailed Reaction Model). Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55, 51-59.	0.7	2
6	Mechanism of high-pressure hydrogen auto-ignition when spouting into air. International Journal of Hydrogen Energy, 2011, 36, 2560-2566.	7.1	52
7	Two-Dimensional Simulation on Propagation Mechanism of H2/O2Cylindrical Detonation with a Detailed Reaction Model: Influence of Initial Energy and Propagation Mechanism. Combustion Science and Technology, 2010, 182, 1884-1900.	2.3	8
8	Detonation Limit Thresholds in H ₂ /O ₂ Rotating Detonation Engine. Combustion Science and Technology, 2010, 182, 1901-1914.	2.3	29
9	Numerical analysis on auto-ignition of a high pressure hydrogen jet spouting from a tube. Proceedings of the Combustion Institute, 2009, 32, 2363-2369.	3.9	54
10	Mechanism of magnetic field effect on OH density distribution in a methane–air premixed jet flame. Proceedings of the Combustion Institute, 2005, 30, 277-284.	3.9	28
11	Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame. Combustion and Flame, 2003, 135, 365-379.	5.2	35
12	Dependence of magnetically induced change in oh distribution in a methane-air premixed flame on equivalence ratio. Combustion Science and Technology, 2003, 175, 1611-1623.	2.3	3
13	Magnetic Effect on a Methane-Air Premixed Flame in Air or Nitrogen Atmosphere. , 2003, , .		0
14	Influence of Four Kinds of Gradient Magnetic Fields on Hydrogen-Oxygen Flame. AIAA Journal, 2003, 41, 1535-1541.	2.6	6
15	Numerical analysis of a hydrogen-oxygen diffusion flame in vertical or horizontal gradient of magnetic field. Combustion Science and Technology, 2002, 174, 149-164.	2.3	17
16	Measurement of Magnetic Effect on OH Distribution in a Hydrogen-Oxygen Inverse Diffusion Flame by Laser-Induced Fluorescence (LIF) Journal of the Spectroscopical Society of Japan, 2002, 51, 222-228.	0.0	2
17	VISUALIZATION OF MAGNETIC EFFECTS ON SPATIAL DISTRIBUTIONS OF OH RADICALS IN A HYDROGEN FLAME. Journal of Flow Visualization and Image Processing, 2001, 8, 12.	0.5	1