Andrew C Laing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498642/publications.pdf

Version: 2024-02-01

57 papers	890 citations	471509 17 h-index	501196 28 g-index
1 1			
57 all docs	57 docs citations	57 times ranked	672 citing authors

#	Article	IF	CITATIONS
1	The influence of ankle muscle activation on postural sway during quiet stance. Gait and Posture, 2014, 39, 1115-1121.	1.4	80
2	Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women. Accident Analysis and Prevention, 2009, 41, 642-650.	5.7	64
3	The Force Attenuation Provided by Hip Protectors Depends on Impact Velocity, Pelvic Size, and Soft Tissue Stiffness. Journal of Biomechanical Engineering, 2008, 130, 061005.	1.3	59
4	Laboratory Evaluation of the gForce Trackerâ,,¢, a Head Impact Kinematic Measuring Device for Use in Football Helmets. Annals of Biomedical Engineering, 2016, 44, 1246-1256.	2.5	57
5	The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors. Journal of Biomechanics, 2011, 44, 2627-2635.	2.1	50
6	Effect of compliant flooring on impact force during falls on the hip. Journal of Orthopaedic Research, 2006, 24, 1405-1411.	2.3	49
7	Characterizing the effective stiffness of the pelvis during sideways falls on the hip. Journal of Biomechanics, 2010, 43, 1898-1904.	2.1	43
8	Compliant flooring to prevent fall-related injuries in older adults: A scoping review of biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety. PLoS ONE, 2017, 12, e0171652.	2.5	40
9	Falls and Parkinson's Disease: Evidence from Video Recordings of Actual Fall Events. Journal of the American Geriatrics Society, 2016, 64, 96-101.	2.6	34
10	The influence of headform orientation and flooring systems on impact dynamics during simulated fall-related head impacts. Medical Engineering and Physics, 2012, 34, 1071-1078.	1.7	33
11	Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface. Journal of Biomechanics, 2014, 47, 2391-2397.	2.1	33
12	The Flooring for Injury Prevention (FLIP) Study of compliant flooring for the prevention of fall-related injuries in long-term care: A randomized trial. PLoS Medicine, 2019, 16, e1002843.	8.4	33
13	The influence of novel compliant floors on balance control in elderly women—A biomechanical study. Accident Analysis and Prevention, 2011, 43, 1480-1487.	5.7	28
14	The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations. Gait and Posture, 2012, 35, 462-466.	1.4	28
15	The effects of body mass index and sex on impact force and effective pelvic stiffness during simulated lateral falls. Clinical Biomechanics, 2013, 28, 1026-1033.	1.2	22
16	Novel safety floors do not influence early compensatory balance reactions in older adults. Gait and Posture, 2014, 40, 160-165.	1.4	20
17	Characterization of the protective capacity of flooring systems using force-deflection profiling. Medical Engineering and Physics, 2013, 35, 108-115.	1.7	19
18	The Influence of Body Mass Index and Gender on the Impact Attenuation Properties of Flooring Systems. Journal of Applied Biomechanics, 2013, 29, 731-739.	0.8	18

#	Article	IF	Citations
19	Quantification of the Trade-Off Between Force Attenuation and Balance Impairment in the Design of Compliant Safety Floors. Journal of Applied Biomechanics, 2013, 29, 563-572.	0.8	17
20	Effects of Advanced Age on the Morphometry and Degenerative State of the Cervical Spine in a Rat Model. Anatomical Record, 2011, 294, 1326-1336.	1.4	12
21	Factors that influence soft tissue thickness over the greater trochanter: Application to understanding hip fractures. Clinical Anatomy, 2015, 28, 253-261.	2.7	12
22	Older females in the workforce – the effects of age on psychophysical estimates of maximum acceptable lifting loads. Ergonomics, 2017, 60, 1708-1717.	2.1	11
23	Study protocol for the Flooring for Injury Prevention (FLIP) Study: a randomised controlled trial in long-term care. Injury Prevention, 2016, 22, 453-460.	2.4	10
24	The influence of muscle activation on impact dynamics during lateral falls on the hip. Journal of Biomechanics, 2018, 66, 111-118.	2.1	9
25	The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip. Annals of Biomedical Engineering, 2017, 45, 2775-2783.	2.5	8
26	Measurement of peak impact loads differ between accelerometers – Effects of system operating range and sampling rate. Journal of Biomechanics, 2017, 58, 222-226.	2.1	8
27	The Effects of Age on the Morphometry of the Cervical Spinal Cord and Spinal Column in Adult Rats: An <scp>MRI</scp> â€Based Study. Anatomical Record, 2014, 297, 1885-1895.	1.4	7
28	The SAFEST review: a mixed methods systematic review of shock-absorbing flooring for fall-related injury prevention. BMC Geriatrics, 2022, 22, 32.	2.7	7
29	Stooping, crouching, and standing – Characterizing balance control strategies across postures. Journal of Biomechanics, 2017, 53, 90-96.	2.1	6
30	Moving beyond quiet stance: Applicability of the inverted pendulum model to stooping and crouching postures. Journal of Biomechanics, 2014, 47, 3574-3579.	2.1	5
31	Protocol for the SAFEST review: the Shock-Absorbing Flooring Effectiveness SysTematic review including older adults and staff in hospitals and care homes. BMJ Open, 2020, 10, e032315.	1.9	5
32	Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1201-1214.	1.6	5
33	Shock-absorbing flooring for fall-related injury prevention in older adults and staff in hospitals and care homes: the SAFEST systematic review. Health Technology Assessment, 2022, 26, 1-196.	2.8	5
34	Age-related differences in movement strategies and postural control during stooping and crouching tasks. Human Movement Science, 2015, 44, 246-257.	1.4	4
35	The influence of increased passive stiffness of the trunk and hips on balance control during reactive stepping. Gait and Posture, 2019, 72, 51-56.	1.4	4
36	Strain of the facet joint capsule during rotation and translation range-of-motion tests: an in vitro porcine model as a human surrogate. Spine Journal, 2020, 20, 475-487.	1.3	4

#	Article	lF	Citations
37	Application of Principal Component Analysis to Forward Reactive Stepping: Whole-body Movement Strategy Differs as a Function of Age and Sex. Gait and Posture, 2021, 89, 38-44.	1.4	4
38	The Influence of Fall Direction and Hip Protector on Fracture Risk: FE Model Predictions Driven by Experimental Data. Annals of Biomedical Engineering, 2022, 50, 278-290.	2.5	4
39	The Effects of Body Position on Trochanteric Soft Tissue Thicknessâ€"Implications for Predictions of Impact Force and Hip Fracture Risk During Lateral Falls. Journal of Applied Biomechanics, 2021, 37, 556-564.	0.8	4
40	Intervening on the Determinants of Mechanical Exposures: The Effects of a Redesigned Production System on Physical Demands and Worker Perceptions. IIE Transactions on Occupational Ergonomics and Human Factors, 2013, 1, 128-139.	0.4	3
41	The influence of repeated chin bar impacts on the protective properties of full-face mountain biking helmets. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2016, 230, 213-224.	0.7	3
42	Pelvis and femur geometry: Relationships with impact characteristics during sideways falls on the hip. Journal of Biomechanics, 2018, 80, 72-78.	2.1	3
43	Manual patient transfers: factors that influence decisions and kinematic strategies employed by nursing aides. Ergonomics, 2019, 62, 565-574.	2.1	3
44	Analysis of invoked slips while wearing flip-flops in wet and dry conditions: Does alternative footwear alter slip kinematics?. Applied Ergonomics, 2021, 92, 103318.	3.1	3
45	Anti-fatigue mats can reduce low back discomfort in transient pain developers. Applied Ergonomics, 2022, 100, 103661.	3.1	3
46	Standing Versus Steppingâ€"Exploring the Relationships Between Postural Steadiness and Dynamic Reactive Balance Control. Journal of Applied Biomechanics, 2018, 34, 488-495.	0.8	2
47	Body configuration as a predictor of centre of mass displacement in a forward reactive step. Human Movement Science, 2019, 66, 292-300.	1.4	2
48	Anatomically Aligned Loading During Falls: Influence of Fall Protocol, Sex and Trochanteric Soft Tissue Thickness. Annals of Biomedical Engineering, 2021, , 1.	2.5	2
49	Evaluation of amplitude- and frequency-based techniques for attenuating inertia-based movement artifact during surface translation perturbations. Gait and Posture, 2021, 86, 299-302.	1.4	1
50	Exploring the influence of impact severity and posture on vertebral joint mechanics in an in-vitro porcine model. Journal of Biomechanics, 2021, 122, 110479.	2.1	1
51	Influence of intermittent pneumatic compression on foot sensation and balance control in chemotherapy-induced peripheral neuropathy patients. Clinical Biomechanics, 2021, 90, 105512.	1.2	1
52	Impact attenuation provided by older adult protective headwear products during simulated fall-related head impacts. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832110503.	0.9	1
53	Strain Response in the Facet Joint Capsule During Physiological Joint Rotation and Translation Following a Simulated Impact Exposure: An In Vitro Porcine Model. Journal of Biomechanical Engineering, 2022, 144, .	1.3	1
54	Footfall Deflection of Antifatigue Flooring During Simulated Human Stance. Ergonomics in Design, 2020, , 106480462097573.	0.7	0

Andrew C Laing

#	Article	IF	CITATIONS
55	Monocular 3D Sway Tracking for Assessing Postural Instability in Cerebral Hypoperfusion During Quiet Standing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 720-729.	4.9	0
56	Factors that influence the distribution of impact force relative to the proximal femur during lateral falls. Journal of Biomechanics, 2021, 127, 110679.	2.1	0
57	Femur geometry and body composition influence femoral neck stresses: A combined fall simulation and beam modelling approach. Journal of Biomechanics, 2022, 141, 111192.	2.1	O