
Yi-Chao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein Chemical Synthesis by Ligation of Peptide Hydrazides. Angewandte Chemie - International Edition, 2011, 50, 7645-7649.	13.8	613
2	Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature Communications, 2019, 10, 982.	12.8	311
3	Nitrogenâ€Doped Porous Molybdenum Carbide and Phosphide Hybrids on a Carbon Matrix as Highly Effective Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701601.	19.5	215
4	Quasi-Racemic X-ray Structures of K27-Linked Ubiquitin Chains Prepared by Total Chemical Synthesis. Journal of the American Chemical Society, 2016, 138, 7429-7435.	13.7	173
5	RNA Display Methods for the Discovery of Bioactive Macrocycles. Chemical Reviews, 2019, 119, 10360-10391.	47.7	160
6	Development of New Thioester Equivalents for Protein Chemical Synthesis. Accounts of Chemical Research, 2013, 46, 2475-2484.	15.6	150
7	Irreversible Siteâ€5pecific Hydrazinolysis of Proteins by Use of Sortase. Angewandte Chemie - International Edition, 2014, 53, 2198-2202.	13.8	122
8	Synthesis of Autophagosomal Marker Protein LC3â€II under Detergentâ€Free Conditions. Angewandte Chemie - International Edition, 2013, 52, 4858-4862.	13.8	92
9	Ligation of Expressed Protein α-Hydrazides <i>via</i> Genetic Incorporation of an α-Hydroxy Acid. ACS Chemical Biology, 2012, 7, 1015-1022.	3.4	80
10	Chemical synthesis of proteins using hydrazide intermediates. National Science Review, 2016, 3, 107-116.	9.5	73
11	Monomer/Oligomer Quasi-Racemic Protein Crystallography. Journal of the American Chemical Society, 2016, 138, 14497-14502.	13.7	72
12	Polyoxometalate-Based Photoactive Hybrid: Uncover the First Crystal Structure of Covalently Linked Hexavanadate-Porphyrin Molecule. Inorganic Chemistry, 2020, 59, 2575-2583.	4.0	66
13	Synthesis of <scp>l</scp> ―and <scp>d</scp> â€Ubiquitin by Oneâ€Pot Ligation and Metalâ€Free Desulfurization. Chemistry - A European Journal, 2016, 22, 7623-7628.	3.3	65
14	De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nature Chemistry, 2019, 11, 644-652.	13.6	63
15	Cysteine-Aminoethylation-Assisted Chemical Ubiquitination of Recombinant Histones. Journal of the American Chemical Society, 2019, 141, 3654-3663.	13.7	62
16	Fine Tuning Electronic Structure of Catalysts through Atomic Engineering for Enhanced Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800789.	19.5	59
17	Lightâ€Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadateâ€Based Supramolecular Catalysts. Angewandte Chemie - International Edition, 2021, 60, 13310-13316.	13.8	52
18	Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling. Chemical Science, 2012, 3, 2766.	7.4	45

YI-CHAO HUANG

#	Article	IF	CITATIONS
19	A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation. Nature Communications, 2017, 8, 14846.	12.8	43
20	Thiol–yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-l-lysine analogue. Organic and Biomolecular Chemistry, 2013, 11, 2624.	2.8	39
21	Chemical synthesis of crystalline proteins. Science China Chemistry, 2015, 58, 1779-1781.	8.2	39
22	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	8.0	38
23	Facile synthesis of C-terminal peptide hydrazide and thioester ofÂNY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron, 2014, 70, 2951-2955.	1.9	37
24	The proton-controlled synthesis of unprecedented diol functionalized Anderson-type POMs. Chemical Communications, 2016, 52, 2378-2381.	4.1	33
25	Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production. Catalysts, 2018, 8, 121.	3.5	26
26	β-{Cr[RC(CH ₂ 0) ₃] ₂ Mo ₆ O ₁₈ } ^{3â^'} the first organically-functionalized β isomer of Anderson-type polyoxometalates. Inorganic Chemistry Frontiers, 2017, 4, 1215-1218.	6.0	25
27	Accelerated Fmoc solid-phase synthesis of peptides with aggregation-disrupting backbones. Organic and Biomolecular Chemistry, 2015, 13, 1500-1506.	2.8	24
28	Hmb ^{off/on} as a switchable thiol protecting group for native chemical ligation. Organic and Biomolecular Chemistry, 2016, 14, 4194-4198.	2.8	22
29	Chemical Synthesis of Integral Membrane Proteins: Methods and Applications. Israel Journal of Chemistry, 2011, 51, 940-952.	2.3	19
30	Polyoxovanadate-iodobodipy supramolecular assemblies: new agents for high efficiency cancer photochemotherapy. Chemical Communications, 2020, 56, 2869-2872.	4.1	18
31	Tosylation of alcohols: an effective strategy for the functional group transformation of organic derivatives of polyoxometalates. Scientific Reports, 2017, 7, 12523.	3.3	17
32	A Series of Weakley-type Polyoxomolybdates: Synthesis, Characterization, and Magnetic Properties by a Combined Experimental and Theoretical Approach. Inorganic Chemistry, 2018, 57, 963-969.	4.0	16
33	Affinity Maturation of Macrocyclic Peptide Modulators of Lys48‣inked Diubiquitin by a Twofold Strategy. Chemistry - A European Journal, 2020, 26, 8022-8027.	3.3	15
34	[V ₄ Mo ₃ O ₁₄ (NAr) ₃ (μ ₂ -NAr) ₃] <su the first polyarylimido-stabilized molybdovanadate cluster. Chemical Communications, 2017, 53, 2551-2554.</su 	ıp>2â^'4.1	sup>: 13
35	One-Pot <i>In Vitro</i> Ribosomal Synthesis of Macrocyclic Depsipeptides. Journal of the American Chemical Society, 2021, 143, 4741-4750.	13.7	13
36	Facile solid-phase synthesis of PNA–peptide conjugates using pNZ-protected PNA monomers. Organic Chemistry Frontiers, 2014, 1, 1050-1054.	4.5	12

YI-CHAO HUANG

#	Article	IF	CITATIONS
37	Buildup of Redoxâ€Responsive Hybrid from Polyoxometalate and Redoxâ€Active Conducting Oligomer: Its Selfâ€Assemblies with Controllable Morphologies. Chemistry - A European Journal, 2017, 23, 14860-14865.	3.3	11
38	Chemoenzymatic Posttranslational Modification Reactions for the Synthesis of Î`[CH 2 NH] ontaining Peptides. Angewandte Chemie - International Edition, 2020, 59, 684-688.	13.8	11
39	De novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition. ELife, 2021, 10, .	6.0	10
40	Thiol-assisted one-pot synthesis of peptide/protein C-terminal thioacids from peptide/protein hydrazides at neutral conditions. Organic and Biomolecular Chemistry, 2014, 12, 9413-9418.	2.8	9
41	Total synthesis of mambalginâ€1/2/3 by twoâ€segment hydrazideâ€based native chemical ligation. Journal of Peptide Science, 2016, 22, 320-326.	1.4	9
42	Ubiquitin 7-amino-4-carbamoylmethylcoumarin as an improved fluorogenic substrate for deubiquitinating enzymes. Tetrahedron, 2016, 72, 4085-4090.	1.9	8
43	Chemical Synthesis of K48â€Linked Diubiquitin by Incorporation of a Lysineâ€Linked Auxiliary Handle. European Journal of Organic Chemistry, 2016, 2016, 2665-2670.	2.4	7
44	Standing out from the crowd. Nature Chemistry, 2016, 8, 101-102.	13.6	6
45	KAHA Ligation at Serine. ChemBioChem, 2016, 17, 28-30.	2.6	3
46	Chemical peptide macrolactonization via intramolecular <scp><i>S</i>â€ŧoâ€<i>S</i>â€ŧoâ€<i>O</i></scp> acyl transfer. Peptide Science, 2022, 114, .	1.8	2
47	Chemoenzymatic Posttranslational Modification Reactions for the Synthesis of Ψ[CH 2 NH] ontaining Peptides. Angewandte Chemie, 2020, 132, 694-698.	2.0	1
48	Lightâ€Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadateâ€Based Supramolecular Catalysts. Angewandte Chemie, 2021, 133, 13422-13428.	2.0	1