
And Robert J Farrauto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1498244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual function materials (Ru+Na2O/Al2O3) for direct air capture of CO2 and in situ catalytic methanation: The impact of realistic ambient conditions. Applied Catalysis B: Environmental, 2022, 307, 120990.	20.2	31
2	Aging study of low Ru loading dual function materials (DFM) for combined power plant effluent CO2 capture and methanation. Applied Catalysis B: Environmental, 2022, 310, 121294.	20.2	21
3	Enhancing the CO ₂ Adsorption Capacity of γ-Al ₂ O ₃ Supported Alkali and Alkaline-Earth Metals: Impacts of Dual Function Material (DFM) Preparation Methods. Industrial & Engineering Chemistry Research, 2022, 61, 10474-10482.	3.7	6
4	Extended aging of Ru-Ni, Na2O/Al2O3 dual function materials (DFM) for combined capture and subsequent catalytic methanation of CO2 from power plant flue gas. Fuel, 2022, 328, 125283.	6.4	13
5	Ru-Ba synergistic effect in dual functioning materials for cyclic CO2 capture and methanation. Applied Catalysis B: Environmental, 2021, 283, 119654.	20.2	54
6	Feasibility Study of Combining Direct Air Capture of CO2 and Methanation at Isothermal Conditions with Dual Function Materials. Applied Catalysis B: Environmental, 2021, 282, 119416.	20.2	68
7	Enhanced propane and carbon monoxide oxidation activity by structural interactions of CeO2 with MnOx/Nb2O5-x catalysts. Applied Catalysis B: Environmental, 2020, 267, 118363.	20.2	26
8	Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS. Applied Surface Science, 2020, 533, 147469.	6.1	61
9	Gasoline automobile catalysis and its historical journey to cleaner air. Nature Catalysis, 2019, 2, 603-613.	34.4	146
10	A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor. International Journal of Hydrogen Energy, 2019, 44, 21205-21219.	7.1	24
11	Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions. Chemical Engineering Journal, 2019, 375, 121953.	12.7	114
12	In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,"Na2Oâ€∤Al2O3 Dual Functional Material. Applied Surface Science, 2019, 479, 25-30.	6.1	135
13	Catalysts and adsorbents for CO2 capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications. Journal of CO2 Utilization, 2019, 31, 143-151.	6.8	117
14	8. CO2 capture and catalytic conversion using solids. , 2019, , 127-136.		0
15	Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Applied Catalysis B: Environmental, 2019, 244, 438-447.	20.2	64
16	Steam reforming of ethanol on Rh/SiCeO2 washcoated monolith catalyst: Stable catalyst performance. International Journal of Hydrogen Energy, 2018, 43, 115-126.	7.1	27
17	Parametric, cyclic aging and characterization studies for CO2 capture from flue gas and catalytic conversion to synthetic natural gas using a dual functional material (DFM). Journal of CO2 Utilization, 2018, 27, 390-397.	6.8	78
18	Copper oxide catalyst supported on niobium oxide for CO oxidation at low temperatures. Catalysis Communications, 2017, 97, 42-46.	3.3	16

#	Article	IF	CITATIONS
19	In situ regeneration of Rhodium in three-way catalysts by aqueous ethanol injection for sustained methane emissions abatement. Catalysis Communications, 2017, 95, 63-66.	3.3	8
20	The Role of Ruthenium in CO2 Capture and Catalytic Conversion to Fuel by Dual Function Materials (DFM). Catalysts, 2017, 7, 88.	3.5	75
21	Catalysts Promoted with Niobium Oxide for Air Pollution Abatement. Catalysts, 2017, 7, 144.	3.5	6
22	Oxygen storage and redox properties of Nb-doped ZrO 2 -CeO 2 -Y 2 O 3 solid solutions for three-way automobile exhaust catalytic converters. Catalysis Today, 2016, 277, 227-233.	4.4	6
23	Moving from discovery to real applications for your catalyst. Applied Catalysis A: General, 2016, 527, 182-189.	4.3	15
24	Adsorption and Methanation of Flue Gas CO ₂ with Dual Functional Catalytic Materials: A Parametric Study. Industrial & Engineering Chemistry Research, 2016, 55, 6768-6776.	3.7	102
25	CO 2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: An update. Journal of CO2 Utilization, 2016, 15, 65-71.	6.8	159
26	Part II: Oxidative Thermal Aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in Automotive Three Way Catalysts: The Effects of Fuel Shutoff and Attempted Fuel Rich Regeneration. Catalysts, 2015, 5, 1797-1814.	3.5	38
27	Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts. Catalysts, 2015, 5, 1770-1796.	3.5	36
28	Dual function materials for CO 2 capture and conversion using renewable H 2. Applied Catalysis B: Environmental, 2015, 168-169, 370-376.	20.2	227
29	Kinetics of CO2 methanation over Ru/ \hat{i}^3 -Al2O3 and implications for renewable energy storage applications. Journal of CO2 Utilization, 2015, 12, 27-33.	6.8	108
30	Catalytic Abatement of Volatile Organic Compounds: Some Industrial Applications. , 2014, , 173-197.		0
31	New catalysts and reactor designs for the hydrogen economy. Chemical Engineering Journal, 2014, 238, 172-177.	12.7	25
32	Biogas reforming for syngas production: The effect of methyl chloride. Applied Catalysis B: Environmental, 2014, 144, 353-361.	20.2	42
33	Steam reforming of sulfur-containing dodecane on a Rh–Pt catalyst: Influence of process parameters on catalyst stability and coke structure. Applied Catalysis B: Environmental, 2014, 160-161, 525-533.	20.2	42
34	Low-Temperature Oxidation of Methane. Science, 2012, 337, 659-660.	12.6	164
35	Selective CO oxidation over a commercial PROX monolith catalyst for hydrogen fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 10874-10880.	7.1	36
36	Dispersed Calcium Oxide as a Reversible and Efficient CO ₂ â^'Sorbent at Intermediate Temperatures. Industrial & Engineering Chemistry Research, 2011, 50, 4042-4049.	3.7	66

#	Article	IF	CITATIONS
37	Steam reforming of ethanol/gasoline mixtures: Deactivation, regeneration and stable performance. Applied Catalysis B: Environmental, 2011, 106, 295-303.	20.2	33
38	Kinetic and process study for ethanol reforming using a Rh/Pt washcoated monolith catalyst. Applied Catalysis B: Environmental, 2009, 89, 58-64.	20.2	33
39	Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy. Catalysis Reviews - Science and Engineering, 2007, 49, 141-196.	12.9	146
40	Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuel cell applications. Applied Catalysis B: Environmental, 2005, 56, 69-75.	20.2	157
41	The application of monoliths for gas phase catalytic reactions. Chemical Engineering Journal, 2001, 82, 149-156.	12.7	354